Search results for "porous material"

showing 10 items of 361 documents

Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis

2017

International audience; The aim of this work was to identify a nanoporous material able to trap toluene traces in order to develop a gas detection device for indoor air quality monitoring or biomedical diagnosis. A set of various adsorbents such as zeolites and activated carbon microspheres was studied here. First a detailed characterization of their porous properties was performed by nitrogen adsorption. Then adsorption of toluene and other interfering compounds which can selectively adsorbed with it, such as water and carbon dioxide, was studied in order to select the most suitable material. Results revealed that the activatedcarbon microspheres W5 and the zeolite NaY, which exhibit high …

Materials science02 engineering and technology010402 general chemistry01 natural sciences[SPI.MAT]Engineering Sciences [physics]/Materialschemistry.chemical_compoundIndoor air qualityAdsorptionmedicineOrganic chemistryGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsZeolitePorosityIndoor pollution[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]NanoporousMicroporous material021001 nanoscience & nanotechnologyCondensed Matter PhysicsToluene0104 chemical scienceschemistryChemical engineeringZeolitesAdsorptionLung cancer0210 nano-technologyCarbon microspheresTolueneActivated carbonmedicine.drugMaterials Chemistry and Physics
researchProduct

Robust Mesoporous CoMo/γ-Al2O3 Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the P…

2018

Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al2O3 catalysts. Cat…

Materials science02 engineering and technology010402 general chemistrybiocrude01 natural sciencesHydrothermal circulationCatalysisCopolymer[CHIM]Chemical SciencesGeneral Materials ScienceComputingMilieux_MISCELLANEOUSbiocrude; cyclodextrin; heterogeneous catalysts; hydrothermal liquefaction; microalgaeheterogeneous catalystsmicroalgaeheterogeneous catalystAqueous two-phase systemhydrothermal liquefaction[CHIM.CATA]Chemical Sciences/CatalysisSettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologyBiorefinery0104 chemical sciencesHydrothermal liquefactioncyclodextrinChemical engineeringYield (chemistry)Materials Science (all)0210 nano-technologyMesoporous materialACS Applied Materials & Interfaces
researchProduct

A comparative study of photocatalytically active nanocrystalline tetragonal T zyrcon- type and monoclinic scheelite-type bismuth vanadate

2018

The authors from Vinča Institute of Nuclear Sciences acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project no: 172056 ). The work of K. Smits was supported by Latvian National Research Program IMIS2 (Grant no. 302/2012 ).

Materials science02 engineering and technologyTetragonal zircon-type BiVO4010402 general chemistry01 natural scienceschemistry.chemical_compoundTetragonal crystal systemSpecific surface areaMaterials ChemistryMethyl orange:NATURAL SCIENCES:Physics [Research Subject Categories]Methyl orange degradationPhotocatalysisMonoclinic scheelite-type BiVO4Process Chemistry and Technology021001 nanoscience & nanotechnologyNanocrystalline material0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryChemical engineeringScheeliteBismuth vanadateCeramics and Composites0210 nano-technologyMesoporous materialMonoclinic crystal systemBismuth vanadate
researchProduct

Not always what closes best opens better: mesoporous nanoparticles capped with organic gates

2019

ABSTRACT Four types of calcined MCM-41 silica nanoparticles, loaded with dyes and capped with different gating ensembles are prepared and characterized. N1 and N2 nanoparticles are loaded with rhodamine 6G and capped with bulky poly(ethylene glycol) derivatives bearing ester groups (1 and 2). N3-N4 nanoparticles are loaded with sulforhodamine B and capped with self-immolative derivatives bearing ester moieties. In the absence of esterase enzyme negligible cargo release from N1, N3 and N4 nanoparticles is observed whereas a remarkable release for N2 is obtained most likely due to the formation of an irregular coating on the outer surface of the nanoparticles. In contrast, a marked delivery i…

Materials science102 Porous / Nanoporous / Nanostructured materialslcsh:BiotechnologyNanoparticle02 engineering and technologyGating010402 general chemistryEngineering and Structural Materials01 natural scienceslaw.inventionSilica nanoparticlesRhodamine 6Gchemistry.chemical_compoundlaw10 Engineering and Structural materialslcsh:TP248.13-248.65lcsh:TA401-492General Materials ScienceCalcinationgated nanodevices021001 nanoscience & nanotechnologyesterase controlled release0104 chemical sciencesChemical engineeringchemistrylcsh:Materials of engineering and construction. Mechanics of materials0210 nano-technologyMesoporous materialmesoporous nanoparticles
researchProduct

Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres

2009

A facile and reproducible one-step pathway has been developed for preparing ordered arrays of mesoporous carbon nanostructures within the pores of anodized aluminium oxide (AAO) membranes, through the confined self-assembly of phenol/formaldehyde resol and amphiphilic copolymer templates. The morphology of the mesoporous carbon nanostructures can be controlled by varying the copolymer surfactant, the quantity of the resol–surfactant precursor sol used and the amount of phenol–formaldehyde resol introduced into the resol–surfactant sol. One-dimensional (1-D) carbon nanostructures, such as carbon fibres with a core–shell structure and carbon ribbons with circular mesopores running parallel to…

Materials scienceAnodic oxidationPolymersCarbon nanofiberNanotechnologyGeneral ChemistryConductive atomic force microscopySurface active agentsPhenolic resinsNanostructuresTemplate reactionMembraneCarbon nanofibersPhenolsCopolymerizationSolsNanofiberCarbon fibersMaterials ChemistryCopolymerCarbide-derived carbonMesoporous materialJournal of Materials Chemistry
researchProduct

Conductive films of ordered nanowire arrays

2004

peer-reviewed High-density, ordered arrays of germanium nanowires have been synthesised within the pores of mesoporous thin films (MTFs) and anodized aluminium oxide (AAO) matrices using a supercritical fluid solution-phase inclusion technique. Conductive atomic force microscopy (C-AFM) was utilised to study the electrical properties of the nanowires within these arrays. Nearly all of the semiconductor nanowires contained within the AAO substrates were found to be conducting. Additionally, each individual nanowire within the substrate possessed similar electrical properties demonstrating that the nanowires are continuous and reproducible within each pore. C-AFM was also able to probe the co…

Materials scienceAnodizingbusiness.industryNanowirechemistry.chemical_elementNanotechnologyGermaniumGeneral ChemistryConductive atomic force microscopySubstrate (electronics)MTFsgermaniumSemiconductorchemistrynanowiresMaterials ChemistryThin filmMesoporous materialbusiness
researchProduct

Mesosynthesis of ZnO-SiO(2) porous nanocomposites with low-defect ZnO nanometric domains.

2011

Silica-based ZnO-MCM-41 mesoporous nanocomposites with high Zn content (5≤Si/Zn≤50) have been synthesized by a one-pot surfactant-assisted procedure from aqueous solution using a cationic surfactant (CTMABr = cetyltrimethylammonium bromide) as structure-directing agent, and starting from molecular atrane complexes as inorganic hydrolytic precursors. This preparative technique allows optimization of the dispersion of the ZnO nanodomains in the silica walls. The mesoporous nature of the final materials is confirmed by x-ray diffraction (XRD), transmission electron microscopy (TEM) and N(2) adsorption-desorption isotherms. The ZnO-MCM-41 materials show unimodal pore size distributions without …

Materials scienceAqueous solutionPhotoluminescenceNanocompositeMechanical EngineeringBioengineeringGeneral ChemistryCrystallographychemistry.chemical_compoundChemical engineeringX-ray photoelectron spectroscopyAtranechemistryMechanics of MaterialsTransmission electron microscopyGeneral Materials ScienceElectrical and Electronic EngineeringSpectroscopyMesoporous materialNanotechnology
researchProduct

Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers

2017

Nanometric biocompatible Metal-Organic Frameworks (nanoMOFs) are promising candidates for drug delivery. Up to now, most studies have targeted the intravenous route, related to pain and severe complications; whereas nanoMOFs for oral administration, a commonly used non-invasive and simpler route, remains however unexplored. We propose here the biofriendly preparation of a suitable oral nanocarrier based on the benchmarked biocompatible mesoporous iron(III) trimesate nanoparticles coated with the bioadhesive polysaccharide chitosan (CS). This method does not hamper the textural/structural properties and the sorption/release abilities of the nanoMOFs upon surface engineering. The interaction …

Materials scienceBiocompatibilityBioadhesiveQuímica organometàl·licaNanoparticleAdministration OralNanotechnology02 engineering and technologySurface engineering010402 general chemistry01 natural sciencesFerric CompoundsArticleChitosanchemistry.chemical_compoundHumansChitosanMultidisciplinaryNanotecnologia021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesDrug LiberationKineticsLysergic Acid DiethylamideEnterocyteschemistryDrug deliveryNanoparticlesNanocarriersCaco-2 Cells0210 nano-technologyMesoporous material
researchProduct

11B-MAS NMR approach to the boron adsorption mechanism on a glucose-functionalised mesoporous silica matrix

2018

[EN] Boron chemistry has raised much interest because, despite the difference between necessities and toxicity being very narrow, it is still widely used in industrial processes. In a previous work we reported an adsorbent for boron extraction from water by the functionalisation of a UVM-7 mesoporous silica matrix with gluconamide moieties. The ability of this material to adsorb boron is based on its well-known affinity for coordinating the cis-diols present in attached saccharide. Although much research on the formation of boron esters with sugars and sugar derivatives in solution has been done, very few reports have dealt with the adsorption mechanism of boron onto functionalised material…

Materials scienceBoron adsorption modellingSolid-statechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesIsothermal processMatrix (chemical analysis)AdsorptionQUIMICA ORGANICAGeneral Materials ScienceBoronExtraction (chemistry)QUIMICA INORGANICAGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryB-11 MAS NMRMesoporous silica021001 nanoscience & nanotechnologyCondensed Matter PhysicsGluconamide-functionalised porous materials0104 chemical sciencesSugar derivatives[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryChemical engineeringchemistryMechanics of Materials0210 nano-technology
researchProduct

Physical activation and characterization of tannin-based foams enforced with boric acid and zinc chloride

2019

In this study, tannin-furanic-based foams enforced with H3BO3 and ZnCl2 are investigated, as well as their properties such as mechanical strength, specific surface area, and pore size distribution. From an industrial point of view, the aforementioned properties of these foams play a key role when used as catalyst, adsorbent, or gas storing materials. Therefore, this study aims to prove that such enforced tannin-furanic foams are promising materials for these types of applications. According to the results, materials that are up to five times stronger can be achieved by carbonizing the foams in comparison to maturing them. With physical activation, it was possible to obtain a specific surfac…

Materials scienceCarbonizationtannin furanic foamsmechanical strengthMicroporous materialzinc chloridephysical activationCatalysisCharacterization (materials science)Boric acidchemistry.chemical_compoundAdsorptionVolume (thermodynamics)Chemical engineeringchemistrySpecific surface arealcsh:TA401-492lcsh:Materials of engineering and construction. Mechanics of materialsta116boric acidAIMS Materials Science
researchProduct