Search results for "pseudogap"

showing 10 items of 22 documents

The electron gas with short coherence length pairs: how to approach the stronger coupling limit?

2001

Abstract The attractive Hubbard model is investigated in 2D using a T -matrix approach. In a self-consistent calculation pairs as infinite lifetime Bosons only exist in the atomic limit and therefore a Fermi surface can be investigated also in the stronger coupling regime. A heavy quasiparticle peak with a weak dispersion crosses the Fermi surface at k F whereas light, single particle excitations do only exist far away from the Fermi surface. At low temperatures there seem to exist different self-consistent solutions. In one of them a pseudogap opens even in the integrated density of states. In the present work accurate k -dependent and k -integrated spectral quantities for a 2D finite latt…

Condensed Matter::Quantum GasesPhysicsHubbard modelCondensed matter physicsEnergy Engineering and Power TechnologyFermi surfaceCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCoherence lengthQuasiparticleDensity of statesCondensed Matter::Strongly Correlated ElectronsElectrical and Electronic EngineeringFermi gasPseudogapBosonPhysica C: Superconductivity
researchProduct

Asymmetric Tunneling Conductance and the non-Fermi Liquid Behavior of Strongly Correlated Fermi Systems

2018

Tunneling differential conductivity (or resistivity) is a sensitive tool to experimentally test the nonFermi liquid behavior of strongly correlated Fermi systems. In the case of common metals the Landau– Fermi liquid theory demonstrates that the differential conductivity is a symmetric function of bias voltage V . This is because the particle-hole symmetry is conserved in the Landau–Fermi liquid state. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition, its Landau–Fermi liquid properties disappear so that the particle-hole symmetry breaks making the differential tunneling conductivity to be asymmetric function of V . Th…

Condensed Matter::Quantum GasesPhysicsQuantum phase transitionSuperconductivityPhysics and Astronomy (miscellaneous)Condensed matter physicsmedia_common.quotation_subject02 engineering and technologyConductivity021001 nanoscience & nanotechnology01 natural sciencesAsymmetryElectrical resistivity and conductivity0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsFermi liquid theory010306 general physics0210 nano-technologyPseudogapQuantum tunnellingmedia_commonJETP Letters
researchProduct

Momentum-dependent pseudogaps in the half-filled two-dimensional Hubbard model

2012

We compute unbiased spectral functions of the two-dimensional Hubbard model by extrapolating Green functions, obtained from determinantal quantum Monte Carlo simulations, to the thermodynamic and continuous time limits. Our results clearly resolve the pseudogap at weak to intermediate coupling, originating from a momentum selective opening of the charge gap. A characteristic pseudogap temperature T*, determined consistently from the spectra and from the momentum dependence of the imaginary-time Green functions, is found to match the dynamical mean-field critical temperature, below which antiferromagnetic fluctuations become dominant. Our results identify a regime where pseudogap physics is …

Condensed Matter::Quantum GasesPhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsHubbard modelCondensed Matter - SuperconductivityQuantum Monte CarloFOS: Physical sciencesCharge (physics)FermionCondensed Matter PhysicsCoupling (probability)Electronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)MomentumCondensed Matter - Strongly Correlated ElectronsQuantum Gases (cond-mat.quant-gas)Condensed Matter::Strongly Correlated ElectronsStrongly correlated materialCondensed Matter - Quantum GasesPseudogapPhysical Review B
researchProduct

Quantum critical point in high-temperature superconductors

2009

Recently, in high-T_c superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D 3He, the physical properties of these three classes of substances are similar to each other.

Condensed Matter::Quantum GasesQuantum phase transitionSuperconductivityPhysicsHigh-temperature superconductivityStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciencesGeneral Physics and AstronomyFermionElectronic structurelaw.inventionSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronslawCondensed Matter::SuperconductivityQuantum critical pointStrongly correlated materialPseudogapPhysics Letters A
researchProduct

Effects of Nid-levels on the electronic band structure of NixCd1-xO semiconducting alloys

2017

NixCd1-xO has a ∼3 eV band edge offset and bandgap varying from 2.2 to 3.6 eV, which is potentially important for transparent electronic and photovoltaic applications. We present a systematic study of the electronic band structure of NixCd1-xO alloys across the composition range. Ion irradiation of alloy samples leads to a saturation of the electron concentration associated with pinning of the Fermi level (EF) at the Fermi stabilization energy, the common energy reference located at 4.9 eV below the vacuum level. The composition dependence of the pinned EF allows determination of the conduction band minimum (CBM) energy relative to the vacuum level. The unusually strong deviation of the CBM…

Condensed matter physicsChemistryBand gapFermi levelGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSemimetalsymbols.namesakeBand bending0103 physical sciencessymbolsDirect and indirect band gaps010306 general physics0210 nano-technologyElectronic band structurePseudogapQuasi Fermi levelJournal of Applied Physics
researchProduct

The composite operator method route to the 2D Hubbard model and the cuprates

2018

In this review paper, we illustrate a possible route to obtain a reliable solution of the 2D Hubbard model and an explanation for some of the unconventional behaviours of underdoped high-$T_\text{c}$ cuprate superconductors within the framework of the composite operator method. The latter is described exhaustively in its fundamental philosophy, various ingredients and robust machinery to clarify the reasons behind its successful applications to many diverse strongly correlated systems, controversial phenomenologies and puzzling materials.

Electronic structureСильно скорельованi системиHubbard modelPhysics and Astronomy (miscellaneous)Hubbard modelFOS: Physical sciencesЕлектронна структура01 natural sciencesComposite operatorПсевдощiлинаTheoretical physicsCondensed Matter - Strongly Correlated ElectronsCupratesCondensed Matter::Superconductivity0103 physical sciencesCuprateбагаточастинковi методи010306 general physicsStrongly correlated systemsКупрати010302 applied physicsPhysicsPseudogapCuprates; Electronic structure; Hubbard model; Many-body techniques; Pseudogap; Strongly correlated systems; багаточастинковi методи; Електронна структура; Купрати; Модель Хаббарда; Псевдощiлина; Сильно скорельованi системи;Strongly Correlated Electrons (cond-mat.str-el)Many-body techniquesCondensed Matter Physicslcsh:QC1-999Модель ХаббардаCondensed Matter::Strongly Correlated Electronslcsh:Physics
researchProduct

Defects, Disorder, and Strong Electron Correlations in Orbital Degenerate, Doped Mott Insulators.

2015

We elucidate the effects of defect disorder and $e$-$e$ interaction on the spectral density of the defect states emerging in the Mott-Hubbard gap of doped transition-metal oxides, such as Y$_{1-x}$Ca$_{x}$VO$_{3}$. A soft gap of kinetic origin develops in the defect band and survives defect disorder for $e$-$e$ interaction strengths comparable to the defect potential and hopping integral values above a doping dependent threshold, otherwise only a pseudogap persists. These two regimes naturally emerge in the statistical distribution of gaps among different defect realizations, which turns out to be of Weibull type. Its shape parameter $k$ determines the exponent of the power-law dependence o…

FOS: Physical sciencesGeneral Physics and Astronomylaw.inventionCondensed Matter - Strongly Correlated ElectronsPhysics and Astronomy (all)lawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin (physics)Condensed Matter - Statistical MechanicsPhysicsCondensed Matter - Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)Statistical Mechanics (cond-mat.stat-mech)Condensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMott insulatorDopingDegenerate energy levelsMaterials Science (cond-mat.mtrl-sci)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksKröger–Vink notationDensity of statesCondensed Matter::Strongly Correlated ElectronsScanning tunneling microscopePseudogapPhysical review letters
researchProduct

Pairing gap and in-gap excitations in trapped fermionic superfluids

2004

We consider trapped atomic Fermi gases with Feshbach-resonance enhanced interactions in pseudogap and superfluid temperatures. We calculate the spectrum of RF(or laser)-excitations for transitions that transfer atoms out of the superfluid state. The spectrum displays the pairing gap and also the contribution of unpaired atoms, i.e. in-gap excitations. The results support the conclusion that a superfluid, where pairing is a many-body effect, was observed in recent experiments on RF spectroscopy of the pairing gap.

FOS: Physical sciencesRoton01 natural sciences010305 fluids & plasmasSuperfluiditySuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronsSuperfluid state0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic Physics010306 general physicsFeshbach resonanceSpectroscopyCondensed Matter - Statistical MechanicsPhysicsCondensed Matter::Quantum GasesQuantum PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)Strongly Correlated Electrons (cond-mat.str-el)Condensed Matter::OtherCondensed Matter - SuperconductivityPairingPseudogapQuantum Physics (quant-ph)Fermi Gamma-ray Space Telescope
researchProduct

Single-particle properties of the Hubbard model in a novel three-pole approximation

2017

We study the 2D Hubbard model using the Composite Operator Method within a novel three-pole approximation. Motivated by the long-standing experimental puzzle of the single-particle properties of the underdoped cuprates, we include in the operatorial basis, together with the usual Hubbard operators, a field describing the electronic transitions dressed by the nearest-neighbor spin fluctuations, which play a crucial role in the unconventional behavior of the Fermi surface and of the electronic dispersion. Then, we adopt this approximation to study the single-particle properties in the strong coupling regime and find an unexpected behavior of the van Hove singularity that can be seen as a prec…

Hubbard modelSingle-particle propertiesField (physics)Hubbard modelThree-pole approximationVan Hove singularityFOS: Physical sciences02 engineering and technology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsQuantum mechanicsCondensed Matter::Superconductivity0103 physical sciencesCuprateElectrical and Electronic Engineering010306 general physicsSpin-½PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Strongly correlated electron systemsFermi surface021001 nanoscience & nanotechnologyCondensed Matter PhysicsComposite Operator MethodElectronic Optical and Magnetic MaterialsComposite Operator Method; Hubbard model; Operatorial approach; Single-particle properties; Strongly correlated electron systems; Three-pole approximation;Operatorial approachStrongly correlated materialCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPseudogap
researchProduct

Hall effect and electronic structure of films

2010

Abstract Tunneling experiments have shown that in order to retain half-metallicity at room temperature not only a large gap is required but also a Fermi energy considerably distant from the minority band edges. We correlate the position of the Fermi energy in the spin minority gap obtained from band structure calculations to Hall effect experiments. As a model system we chose Co 2 Fe x Mn 1 - x Si , where the Fermi energy was calculated to move from the valence band edge of the minority states to the conduction band edge with increasing x . On high quality laser ablated epitaxial films we observe a sign change of both the normal and the anomalous Hall effect with doping. The experimental da…

Materials scienceCondensed matter physicsBand gapFermi levelFermi energyCondensed Matter PhysicsSemimetalElectronic Optical and Magnetic Materialssymbols.namesakeBand bendingsymbolsCondensed Matter::Strongly Correlated ElectronsDirect and indirect band gapsPseudogapQuasi Fermi levelJournal of Magnetism and Magnetic Materials
researchProduct