Search results for "quantum computer"

showing 10 items of 211 documents

Precise experimental investigation of eigenmodes in a planar ion crystal.

2012

The accurate characterization of eigenmodes and eigenfrequencies of two-dimensional ion crystals provides the foundation for the use of such structures for quantum simulation purposes. We present a combined experimental and theoretical study of two-dimensional ion crystals. We demonstrate that standard pseudopotential theory accurately predicts the positions of the ions and the location of structural transitions between different crystal configurations. However, pseudopotential theory is insufficient to determine eigenfrequencies of the two-dimensional ion crystals accurately but shows significant deviations from the experimental data obtained from resolved sideband spectroscopy. Agreement …

PhysicsQuantum PhysicsAtomic Physics (physics.atom-ph)General Physics and AstronomyQuantum simulatorFOS: Physical sciences01 natural sciences010305 fluids & plasmasIonPhysics - Atomic PhysicsPseudopotentialCrystal0103 physical sciencesCoulombIon trapAtomic physics010306 general physicsSpectroscopyQuantum Physics (quant-ph)Quantum computerPhysical review letters
researchProduct

Dynamics of entanglement in one-dimensional spin systems

2003

We study the dynamics of quantum correlations in a class of exactly solvable Ising-type models. We analyze in particular the time evolution of initial Bell states created in a fully polarized background and on the ground state. We find that the pairwise entanglement propagates with a velocity proportional to the reduced interaction for all the four Bell states. Singlet-like states are favored during the propagation, in the sense that triplet-like states change their character during the propagation under certain circumstances. Characteristic for the anisotropic models is the instantaneous creation of pairwise entanglement from a fully polarized state; furthermore, the propagation of pairwis…

PhysicsQuantum PhysicsBell stateStrongly Correlated Electrons (cond-mat.str-el)STATISTICAL MECHANICSFOS: Physical sciencesXY-MODELQuantum PhysicsQuantum entanglementSquashed entanglementMultipartite entanglementQUANTUM STATESAtomic and Molecular Physics and OpticsCondensed Matter - Strongly Correlated ElectronsLocal hidden variable theoryBell's theoremQuantum mechanicsSTATISTICAL MECHANICS; QUANTUM STATES; XY-MODELQuantum Physics (quant-ph)Entanglement witnessQuantum computerPhysical Review A
researchProduct

Arbitrary state controlled-unitary gate by adiabatic passage

2006

We propose a robust scheme involving atoms fixed in an optical cavity to directly implement the universal controlled-unitary gate. The present technique based on adiabatic passage uses novel dark states well suited for the controlled-rotation operation. We show that these dark states allow the robust implementation of a gate that is a generalisation of the controlled-unitary gate to the case where the control qubit can be selected to be an arbitrary state. This gate has potential applications to the rapid implementation of quantum algorithms such as of the projective measurement algorithm. This process is decoherence-free since excited atomic states and cavity modes are not populated during…

PhysicsQuantum PhysicsCluster stateFOS: Physical sciencesAtomic and Molecular Physics and OpticsQuantum circuitDark stateQuantum gateComputer Science::Emerging Technologies[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Controlled NOT gateQubitQuantum mechanicsQuantum Physics (quant-ph)Trapped ion quantum computerQuantum computer
researchProduct

Implementing quantum gates through scattering between a static and a flying qubit

2010

We investigate whether a two-qubit quantum gate can be implemented in a scattering process involving a flying and a static qubit. To this end, we focus on a paradigmatic setup made out of a mobile particle and a quantum impurity, whose respective spin degrees of freedom couple to each other during a one-dimensional scattering process. Once a condition for the occurrence of quantum gates is derived in terms of spin-dependent transmission coefficients, we show that this can be actually fulfilled through the insertion of an additional narrow potential barrier. An interesting observation is that under resonance conditions the above enables a gate only for isotropic Heisenberg (exchange) interac…

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesAtomic and Molecular Physics and OpticsQuantum circuitQuantum gateClassical mechanicsComputer Science::Emerging TechnologiesControlled NOT gateQuantum error correctionQubitQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)quantum gate scattering flying qubitQuantum informationQuantum Physics (quant-ph)Quantum information scienceQuantum computer
researchProduct

Cloning transformations in spin networks without external control

2004

In this paper we present an approach to quantum cloning with unmodulated spin networks. The cloner is realized by a proper design of the network and a choice of the coupling between the qubits. We show that in the case of phase covariant cloner the XY coupling gives the best results. In the 1->2 cloning we find that the value for the fidelity of the optimal cloner is achieved, and values comparable to the optimal ones in the general N->M case can be attained. If a suitable set of network symmetries are satisfied, the output fidelity of the clones does not depend on the specific choice of the graph. We show that spin network cloning is robust against the presence of static imperfection…

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsmedia_common.quotation_subjectFidelityFOS: Physical sciencesQuantum PhysicsTopologyAtomic and Molecular Physics and OpticsQuantum gateAtomic and Molecular PhysicsQuantum mechanicsQubitMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin networkand OpticsQuantum cloningQuantum informationQuantum information scienceQuantum Physics (quant-ph)Quantum computermedia_common
researchProduct

Entanglement of superconducting qubits via microwave fields: Classical and quantum regimes

2008

We study analytically and numerically the problem of two qubits with fixed coupling irradiated with quantum or classical fields. In the classical case, we derive an effective Hamiltonian, and construct composite pulse sequences leading to a CNOT gate. In the quantum case, we show that qubit-qubit-photon multiparticle entanglement and maximally entangled two-qubit state can be obtained by driving the system at very low powers (one quanta of excitation). Our results can be applied to a variety of systems of two superconducting qubits coupled to resonators.

PhysicsQuantum PhysicsCondensed Matter - SuperconductivityQuantum sensorFOS: Physical sciencesQuantum PhysicsQuantum entanglementCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Computer Science::Emerging TechnologiesControlled NOT gateQuantum mechanicsQuantum electrodynamicsW stateQuantum Physics (quant-ph)Amplitude damping channelSuperconducting quantum computingTrapped ion quantum computerQuantum teleportationPhysical Review B
researchProduct

Robustness of quantum memories based on Majorana zero modes

2012

We analyze the rate at which quantum information encoded in zero-energy Majorana modes is lost in the presence of perturbations. We show that information can survive for times that scale exponentially with the size of the chain both in the presence of quenching and time-dependent quadratic dephasing perturbations, even when the latter have spectral components above the system's energy gap. The origin of the robust storage, namely the fact that a sudden quench affects in the same way both parity sectors of the original spectrum, is discussed, together with the memory performance at finite temperatures and in the presence of particle exchange with a bath.

PhysicsQuantum PhysicsDephasingFOS: Physical sciencesParity (physics)Condensed Matter Physics01 natural sciences010305 fluids & plasmasElectronic Optical and Magnetic MaterialsMAJORANAQuadratic equationRobustness (computer science)Quantum mechanics0103 physical sciencesQuantum informationQuantum Physics (quant-ph)010306 general physicsQuantumQuantum computerPhysical Review B
researchProduct

Microwave potentials and optimal control for robust quantum gates on an atom chip

2006

We propose a two-qubit collisional phase gate that can be implemented with available atom chip technology, and present a detailed theoretical analysis of its performance. The gate is based on earlier phase gate schemes, but uses a qubit state pair with an experimentally demonstrated, very long coherence lifetime. Microwave near-fields play a key role in our implementation as a means to realize the state-dependent potentials required for conditional dynamics. Quantum control algorithms are used to optimize gate performance. We employ circuit configurations that can be built with current fabrication processes, and extensively discuss the impact of technical noise and imperfections that charac…

PhysicsQuantum PhysicsFABRICATIONFOS: Physical sciencesOptimal controlAtomic and Molecular Physics and OpticsQuantum circuitComputer Science::Hardware ArchitectureQuantum gateComputer Science::Emerging TechnologiesControlled NOT gateQuantum mechanicsQubitElectronic engineeringSCATTERINGQuantum Physics (quant-ph)NEUTRAL ATOMSMicrowaveMICROCHIP TRAPSQuantum computerCoherence (physics)
researchProduct

Experimental and theoretical challenges for the trapped electron quantum computer

2009

We discuss quantum information processing with trapped electrons. After recalling the operation principle of planar Penning traps we sketch the experimental conditions to load, cool and detect single electrons. Here we present a detailed investigation of a scalable scheme including feasibility studies and the analysis of all important elements, relevant for the experimental stage. On the theoretical side, we discuss different methods to couple electron qubits. We estimate the relevant qubit coherence times and draw implications for the experimental setting. A critical assessment of quantum information processing with trapped electrons is concluding the article.

PhysicsQuantum PhysicsFOS: Physical sciencesInstitut für Physik und AstronomieElectronCondensed Matter PhysicsQuantum information processingAtomic and Molecular Physics and OpticsComputational physicsPlanarQubitCritical assessmentQuantum Physics (quant-ph)Quantum computerCoherence (physics)
researchProduct

Nonadiabatic quantum search algorithms

2007

7 pages, 4 figures.-- PACS nrs.: 03.67.Lx, 05.45.Mt, 72.15.Rn.-- ISI Article Identifier: 000251326400049.-- ArXiv pre-print available at: http://arxiv.org/abs/0706.1139

PhysicsQuantum PhysicsFOS: Physical sciences[PACS] Semiclassical methods in quantum chaosAdiabatic quantum computationAtomic and Molecular Physics and OpticsQuantum chaosCromodinàmica quànticaAmplitude amplificationSearch algorithm[PACS] Localization effects (metals/alloys) including Anderson or weak localizationGrover's algorithmQuantum algorithmCamps Teoria quàntica deQuantum informationQuantum Physics (quant-ph)AlgorithmQuantum computer[PACS] Quantum computation
researchProduct