Search results for "quantum computer"

showing 10 items of 211 documents

Non-Markovian dissipative dynamics of two coupled qubits in independent reservoirs: a comparison between exact solutions and master equation approach…

2009

The reduced dynamics of two interacting qubits coupled to two independent bosonic baths is investigated. The one-excitation dynamics is derived and compared with that based on the resolution of appropriate non-Markovian master equations. The Nakajima-Zwanzig and the time-convolutionless projection operator techniques are exploited to provide a description of the non-Markovian features of the dynamics of the two-qubits system. The validity of such approximate methods and their range of validity in correspondence to different choices of the parameters describing the system are brought to light.

PhysicsQuantum PhysicsQuantum decoherenceMarkov processFOS: Physical sciencesAtomic and Molecular Physics and OpticsOpen quantum systemRange (mathematics)symbols.namesakeClassical mechanicsQubitMaster equationsymbolsopen quantum system master equation techniquesStatistical physicsQuantum Physics (quant-ph)BosonQuantum computer
researchProduct

Microwave-induced coupling of superconducting qubits

2008

We investigate the quantum dynamics of a system of two coupled superconducting qubits under microwave irradiation. We find that, with the qubits operated at the charge co-degeneracy point, the quantum evolution of the system can be described by a new effective Hamiltonian which has the form of two coupled qubits with tunable coupling between them. This Hamiltonian can be used for experimental tests on macroscopic entanglement and for implementing quantum gates.

PhysicsQuantum PhysicsQuantum networkCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesQuantum PhysicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Quantum technologyComputer Science::Emerging TechnologiesQuantum gateQuantum error correctionQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Superconducting tunnel junctionW stateQuantum Physics (quant-ph)Superconducting quantum computingComputer Science::DatabasesTrapped ion quantum computerPhysical Review B
researchProduct

Simulation of many-qubit quantum computation with matrix product states

2006

Matrix product states provide a natural entanglement basis to represent a quantum register and operate quantum gates on it. This scheme can be materialized to simulate a quantum adiabatic algorithm solving hard instances of a NP-Complete problem. Errors inherent to truncations of the exact action of interacting gates are controlled by the size of the matrices in the representation. The property of finding the right solution for an instance and the expected value of the energy are found to be remarkably robust against these errors. As a symbolic example, we simulate the algorithm solving a 100-qubit hard instance, that is, finding the correct product state out of ~ 10^30 possibilities. Accum…

PhysicsQuantum PhysicsQuantum networkQuantum registerFOS: Physical sciencesComputational Physics (physics.comp-ph)Adiabatic quantum computationAtomic and Molecular Physics and OpticsPartícules (Física nuclear)Condensed Matter - Other Condensed MatterQuantum gateQuantum error correctionQubitQuantum mechanicsQuantum algorithmStatistical physicsCamps Teoria quàntica deQuantum Physics (quant-ph)Physics - Computational PhysicsOther Condensed Matter (cond-mat.other)Quantum computer
researchProduct

Oscillations of the purity in the repeated-measurement-based generation of quantum states

2008

Repeated observations of a quantum system interacting with another one can drive the latter toward a particular quantum state, irrespectively of its initial condition, because of an {\em effective non-unitary evolution}. If the target state is a pure one, the degree of purity of the system approaches unity, even when the initial condition of the system is a mixed state. In this paper we study the behavior of the purity from the initial value to the final one, that is unity. Depending on the parameters, after a finite number of measurements, the purity exhibits oscillations, that brings about a lower purity than that of the initial state, which is a point to be taken care of in concrete appl…

PhysicsQuantum PhysicsQuantum opticFOS: Physical sciencesTransition of stateQuantum capacitySettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsQuantum stateQuantum mechanicsQuantum processFoundations of quantum mechanicCoherent control of atomic interactions with photonQuantum systemQuantum operationInitial value problemQuantum Physics (quant-ph)Quantum computer
researchProduct

Demonstration of a fully tuneable entangling gate for continuous-variable one-way quantum computation

2015

We introduce a fully tuneable entangling gate for continuous-variable one-way quantum computation. We present a proof-of-principle demonstration by propagating two independent optical inputs through a three-mode linear cluster state and applying the gate in various regimes. The genuine quantum nature of the gate is confirmed by verifying the entanglement strength in the output state. Our protocol can be readily incorporated into efficient multi-mode interaction operations in the context of large-scale one-way quantum computation, as our tuning process is the generalisation of cluster state shaping.

PhysicsQuantum PhysicsTheoryofComputation_GENERALNonlinear opticsFOS: Physical sciencesAtomic and Molecular Physics and OpticsContinuous variableQuantum circuitQuantum gateControlled NOT gateQuantum mechanicsQuantum algorithmQuantum Physics (quant-ph)Quantum computer
researchProduct

Observing the phase space trajectory of an entangled matter wave packet

2010

We observe the phase space trajectory of an entangled wave packet of a trapped ion with high precision. The application of a spin dependent light force on a superposition of spin states allows for coherent splitting of the matter wave packet such that two distinct components in phase space emerge. We observe such motion with a precision of better than 9% of the wave packet extension in both momentum and position, corresponding to a 0.8 nm position resolution. We accurately study the effect of the initial ion temperature on the quantum entanglement dynamics. Furthermore, we map out the phonon distributions throughout the action of the displacement force. Our investigation shows corrections t…

PhysicsQuantum PhysicsWave packetCavity quantum electrodynamicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmasPhase spaceQuantum mechanicsQubit0103 physical sciencesMatter waveW stateQuantum Physics (quant-ph)010306 general physicsQuantum teleportationTrapped ion quantum computer
researchProduct

Quantum search by parallel eigenvalue adiabatic passage

2008

We propose a strategy to achieve the Grover search algorithm by adiabatic passage in a very efficient way. An adiabatic process can be characterized by the instantaneous eigenvalues of the pertaining Hamiltonian, some of which form a gap. The key to the efficiency is based on the use of parallel eigenvalues. This allows us to obtain non-adiabatic losses which are exponentially small, independently of the number of items in the database in which the search is performed.

PhysicsQuantum Physics[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]FOS: Physical sciencesAdiabatic quantum computation01 natural sciencesAtomic and Molecular Physics and OpticsQuantum search010305 fluids & plasmassymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Search algorithmQuantum mechanics0103 physical sciencesComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONsymbolsStatistical physics010306 general physicsAdiabatic processHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Eigenvalues and eigenvectors[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]ComputingMilieux_MISCELLANEOUSQuantum computer
researchProduct

Implementing Quantum Finite Automata Algorithms on Noisy Devices

2021

Quantum finite automata (QFAs) literature offers an alternative mathematical model for studying quantum systems with finite memory. As a superiority of quantum computing, QFAs have been shown exponentially more succinct on certain problems such as recognizing the language \(\mathtt {MOD}_\mathrm{p}= \{{a^{j}} \mid {j \equiv 0 \mod p}\} \) with bounded error, where p is a prime number. In this paper we present improved circuit based implementations for QFA algorithms recognizing the \(\mathtt {MOD}_\mathrm{p}\) problem using the Qiskit framework. We focus on the case \(p=11\) and provide a 3 qubit implementation for the \(\mathtt {MOD}_\mathrm{11}\) problem reducing the total number of requi…

PhysicsQuantum circuitQubitModPrime numberQuantum finite automataQuantum algorithmQuantumAlgorithmQuantum computer
researchProduct

Generation of multipartite entangled states in Josephson architectures

2006

We propose and analyze a scheme for the generation of multipartite entangled states in a system of inductively coupled Josephson flux qubits. The qubits have fixed eigenfrequencies during the whole process in order to minimize decoherence effects and their inductive coupling can be turned on and off at will by tuning an external control flux. Within this framework, we will show that a W state in a system of three or more qubits can be generated by exploiting the sequential one by one coupling of the qubits with one of them playing the role of an entanglement mediator.

PhysicsQuantum computers Quantum optics flux qubitsQuantum PhysicsBell stateFlux qubitCondensed Matter - SuperconductivityCluster stateFOS: Physical sciencesWIGNER-FUNCTIONQuantum entanglementQuantum PhysicsQUANTUM-STATECondensed Matter PhysicsCOMPUTATIONElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)MultipartiteComputer Science::Emerging TechnologiesQuantum mechanicsTOMOGRAPHYW stateQuantum Physics (quant-ph)Superconducting quantum computingEntanglement distillationCHARGE QUBITS
researchProduct

Driven Appearance and Disappearance of Quantum Zeno Effect in the Dynamics of a Four-level Trapped Ion

2001

An example of constrained unitary quantum dynamics in the context of trapped ions is given. We study a laser driven four-level ion system confined in an isotropic three-dimensional Paul microtrap. Our main result is that when two independent controllable continuous measurement processes are simultaneously present, the unitary quantum dynamics of the system can be parametrically frozen into a one-dimensional Hilbert subspace (Quantum Zeno Effect) or constrained into a two-dimensional one, at will. Conditions under which one of the two processes acts upon the physical system inhibiting the effects due to the other one, are explicitly found and discussed (Hierarchically Controlled Dynamics).

PhysicsQuantum mechanicsQuantum dynamicsIsotropyPhysical systemCavity quantum electrodynamicsGeneral Physics and AstronomyContext (language use)Trapped ion quantum computerIonQuantum Zeno effectFortschritte der Physik
researchProduct