Search results for "quantum physics"

showing 10 items of 1595 documents

Robust non-Markovianity in ultracold gases

2012

We study the effect of thermal fluctuations on a probe qubit interacting with a Bose-Einstein condensed (BEC) reservoir. The zero-temperature case was studied in [Haikka P et al 2011 Phys. Rev. A 84 031602], where we proposed a method to probe the effects of dimensionality and scattering length of a BEC based on its behavior as an environment. Here we show that the sensitivity of the probe qubit is remarkably robust against thermal noise. We give an intuitive explanation for the thermal resilience, showing that it is due to the unique choice of the probe qubit architecture of our model.

PhysicsCondensed Matter::Quantum GasesWork (thermodynamics)Quantum PhysicsCold Atoms Open Quantum System Markovian Master equations/dk/atira/pure/subjectarea/asjc/3100/3107/dk/atira/pure/subjectarea/asjc/3100/3104Thermal fluctuationsFOS: Physical sciencesScattering lengthPhysics and Astronomy(all)Condensed Matter PhysicsSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Optics/dk/atira/pure/subjectarea/asjc/3100Quantum Gases (cond-mat.quant-gas)Quantum mechanicsQubitThermalSensitivity (control systems)Condensed Matter - Quantum Gases/dk/atira/pure/subjectarea/asjc/2600/2610Quantum Physics (quant-ph)Mathematical PhysicsCurse of dimensionality
researchProduct

Ground-state fidelity and bipartite entanglement in the Bose-Hubbard model.

2007

We analyze the quantum phase transition in the Bose-Hubbard model borrowing two tools from quantum-information theory, i.e. the ground-state fidelity and entanglement measures. We consider systems at unitary filling comprising up to 50 sites and show for the first time that a finite-size scaling analysis of these quantities provides excellent estimates for the quantum critical point.We conclude that fidelity is particularly suited for revealing a quantum phase transition and pinning down the critical point thereof, while the success of entanglement measures depends on the mechanisms governing the transition.

Quantum phase transitionPhysicsQuantum PhysicsHubbard modelFOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementBose–Hubbard modelSquashed entanglementMultipartite entanglementCondensed Matter - Other Condensed MatterQuantum mechanicsQuantum critical pointQuantum informationQuantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)Physical review letters
researchProduct

Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects

2000

We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.

General Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectron01 natural sciencesResonance (particle physics)Bethe ansatzCondensed Matter - Strongly Correlated Electronssymbols.namesakeQuantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsAharonov–Bohm effectPhysicsMesoscopic physicsCondensed Matter - Mesoscale and Nanoscale PhysicsNonlinear Sciences - Exactly Solvable and Integrable SystemsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Persistent currentQuantum Physics021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectQuantum dotsymbolsKondo effectExactly Solvable and Integrable Systems (nlin.SI)0210 nano-technology
researchProduct

Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale

2020

Schemes of gravitationally induced decoherence are being actively investigated as possible mechanisms for the quantum-to-classical transition. Here, we introduce a decoherence process due to quantum gravity effects. We assume a foamy quantum spacetime with a fluctuating minimal length coinciding on average with the Planck scale. Considering deformed canonical commutation relations with a fluctuating deformation parameter, we derive a Lindblad master equation that yields localization in energy space and decoherence times consistent with the currently available observational evidence. Compared to other schemes of gravitational decoherence, we find that the decoherence rate predicted by our mo…

High Energy Physics - TheoryLength scaleQuantum decoherenceScienceQuantum physicsGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Quantum spacetime01 natural sciencesGeneral Relativity and Quantum CosmologyArticleGeneral Biochemistry Genetics and Molecular BiologyGravitation0103 physical sciencesMaster equation010306 general physicsQuantumCondensed Matter - Statistical MechanicsPhysicsMesoscopic physicsMultidisciplinaryStatistical Mechanics (cond-mat.stat-mech)010308 nuclear & particles physicsQGeneral ChemistryClassical mechanicsHigh Energy Physics - Theory (hep-th)Quantum gravityQuantum Physics (quant-ph)Theoretical physics
researchProduct

Damping and pseudo-fermions

2012

After a short abstract introduction on the time evolution driven by non self-adjoint hamiltonians, we show how the recently introduced concept of {\em pseudo-fermion} can be used in the description of damping in finite dimensional quantum systems, and we compare the results deduced adopting the Schr\"odinger and the Heisenberg representations.

PhysicsQuantum Physicspseudo-fermionsTime evolutionFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)FermionMathematics::Spectral Theorysymbols.namesakesymbolsQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaQuantumMathematical PhysicsSchrödinger's catMathematical physicsJournal of Mathematical Physics
researchProduct

Bose-Einstein Condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap

2014

We report a novel approach for preparing a Bose-Einstein condensate (BEC) of $^{87}$Rb atoms using electro-pneumatically driven transfer of atoms into a Quadrupole-Ioffe magnetic trap (QUIC Trap). More than 5$\times$$10^{8}$ atoms from a Magneto-optical trap are loaded into a spherical quadrupole trap and then these atoms are transferred into an Ioffe trap by moving the Ioffe coil towards the center of the quadrupole coil, thereby, changing the distance between quadrupole trap center and the Ioffe coil. The transfer efficiency is more than 80 \%. This approach is different from a conventional approach of loading the atoms into a QUIC trap wherein the spherical quadrupole trap is transformed…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsAtomic Physics (physics.atom-ph)Condensed Matter::OtherCondensationGeneral Physics and AstronomyFOS: Physical scienceslaw.inventionPhysics - Atomic PhysicsTrap (computing)lawElectromagnetic coilPhase spaceMagnetic trapQuadrupolePhysics::Atomic PhysicsAtomic physicsQuantum Physics (quant-ph)Bose–Einstein condensateEvaporative cooler
researchProduct

Reading a qubit quantum state with a quantum meter: time unfolding of quantum Darwinism and quantum information flux

2020

Quantum non Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non Markovian and non darwinistic behaviours

Quantum PhysicsFOS: Physical sciencesQuantum Physics (quant-ph)
researchProduct

Collective spontaneous emission of two entangled atoms near an oscillating mirror

2020

We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state and in the presence of an oscillating mirror. We assume that the two atoms, one in the ground state and the other in the excited state, are prepared in a correlated (symmetric or antisymmetric) {\em Bell}-type state. We also suppose that the perfectly reflecting plate oscillates adiabatically, with the field modes satisfying the boundary conditions at the mirror surface at any given instant, so that the time-dependence of the interaction Hamiltonian is entirely enclosed in the instantaneous atoms-wall distance. Using time-dependent perturbation …

PhysicsQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciOscillationAntisymmetric relationAtomic Physics (physics.atom-ph)Vacuum stateFOS: Physical sciencesSpontaneous emission Superradiance and Subradiance dynamical external environments01 natural sciences010305 fluids & plasmasPhysics - Atomic PhysicsExcited state0103 physical sciencesRadiative transferSpontaneous emissionBoundary value problemAtomic physics010306 general physicsGround stateQuantum Physics (quant-ph)
researchProduct

Nonlocal field correlations and dynamical Casimir-Polder forces between one excited- and two ground-state atoms

2006

The problem of nonlocality in the dynamical three-body Casimir-Polder interaction between an initially excited and two ground-state atoms is considered. It is shown that the nonlocal spatial correlations of the field emitted by the excited atom during the initial part of its spontaneous decay may become manifest in the three-body interaction. The observability of this new phenomenon is discussed.

PhysicsSpontaneous decayQuantum PhysicsField (physics)Dynamical dispersion forceFOS: Physical sciencesThree-body forcesCondensed Matter PhysicsAtomic and Molecular Physics and OpticsCasimir effectQuantum nonlocalityQuantum mechanicsExcited statePhysics::Atomic and Molecular ClustersCausality and nonlocalityPhysics::Atomic PhysicsObservabilityQuantum Physics (quant-ph)Ground state
researchProduct

Effect of Static Disorder in an Electron-Fabry Perot Interferometr with Two Quantum Scattering Centers

2007

In a recent paper -- F. Ciccarello \emph{et al.}, New J. Phys. \textbf{8}, 214 (2006) -- we have demonstrated that the electron transmission properties of a one-dimensional (1D) wire with two identical embedded spin-1/2 impurities can be significantly affected by entanglement between the spins of the scattering centers. Such effect is of particular interest in the control of transmission of quantum information in nanostructures and can be used as a detection scheme of maximally entangled states of two localized spins. In this letter, we relax the constraint that the two magnetic impurities are equal and investigate how the main results presented in the above paper are affected by a static d…

PhysicsCoupling constantQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpinsScatteringFOS: Physical sciencesQuantum entanglementElectronCondensed Matter Physics01 natural sciencesIndustrial and Manufacturing EngineeringAtomic and Molecular Physics and Optics3. Good health010305 fluids & plasmasMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsScattering theoryQuantum informationQuantum Physics (quant-ph)010306 general physicsInstrumentationFabry–Pérot interferometer
researchProduct