Search results for "radiation effects"
showing 10 items of 97 documents
Variability of the Si-O-Si angle in amorphous-SiO2 probed by electron paramagnetic resonance and Raman spectroscopy
2009
We report an experimental investigation by electron paramagnetic resonance (EPR) and Raman spectroscopy on a variety of amorphous silicon dioxide materials. Our study by EPR have permitted us to point out that the splitting of the primary hyperfine doublet of the Eγ′ center shows a relevant sample-to-sample variability, changing from ∼41.8 to ∼42.6 mT in the set of materials we considered. The parallel study by Raman spectroscopy has enabled us to state that this variability is attributable to the different Si-O-Si angle characterizing the matrices of the different materials. © 2009 Elsevier B.V. All rights reserved.
Design of Radiation-Hardened Rare-Earth Doped Amplifiers through a Coupled Experiment/Simulation Approach
2013
International audience; We present an approach coupling a limited experimental number of tests with numerical simulations regarding the design of radiation-hardened (RH) rare earth (RE)-doped fiber amplifiers. Radiation tests are done on RE-doped fiber samples in order to measure and assess the values of the principal input parameters requested by the simulation tool based on particle swarm optimization (PSO) approach. The proposed simulation procedure is validated by comparing the calculation results with the measured degradations of two amplifiers made with standard and RH RE-doped optical fibers, respectively. After validation, the numerical code is used to theoretically investigate the …
Defect-related visible luminescence of silica nanoparticles
2013
The high photon emissivity in the visible spectral range is one of the most relevant phenomena emerging from the reduction of silica down to nanoscale; hence it is promising for the development of optical nanotechnologies (down converter, probes, display). It is well accepted that the origin of this luminescence is related to the high specific surface (~100 m2/g) that favors the formation of optically active defects at the nanosilica surface. With the aim to clarify the role of specific luminescent defects, here we report a detailed study of spectral and decay features by time-resolved photoluminescence spectra under a visible-UV tunable laser excitation. Our study is carried out on differe…
Luminescence activity of irradiated SiO2-clathrate Melanophlogite
2013
Radiation Hardness Assurance Through System-Level Testing: Risk Acceptance, Facility Requirements, Test Methodology, and Data Exploitation
2021
International audience; Functional verification schemes at a level different from component-level testing are emerging as a cost-effective tool for those space systems for which the risk associated with a lower level of assurance can be accepted. Despite the promising potential, system-level radiation testing can be applied to the functional verification of systems under restricted intrinsic boundaries. Most of them are related to the use of hadrons as opposed to heavy ions. Hadrons are preferred for the irradiation of any bulky system, in general, because of their deeper penetration capabilities. General guidelines about the test preparation and procedure for a high-level radiation test ar…
Intrinsic Point Defects in Silica for Fiber Optics Applications
2021
Due to its unique properties, amorphous silicon dioxide (a-SiO2) or silica is a key material in many technological fields, such as high-power laser systems, telecommunications, and fiber optics. In recent years, major efforts have been made in the development of highly transparent glasses, able to resist ionizing and non-ionizing radiation. However the widespread application of many silica-based technologies, particularly silica optical fibers, is still limited by the radiation-induced formation of point defects, which decrease their durability and transmission efficiency. Although this aspect has been widely investigated, the optical properties of certain defects and the correlation betwee…
Influence of double infections on the induction of thymidine kinase by UV-irradiated herpes simplex virus types 1 and 2 and pseudorabies virus
1975
Simultaneous infection of primary rabbit kidney cells with HSV type 1 TK+ and a TK- strain results in a mutual influence of both viruses on the induction of thymidine kinase (TK). TK+ virus has an enhancing and TK- virus a depressing effect on TK induction by a superinfecting TK+ virus. The enzyme induction depends on the ratio of multiplicities of both viruses. The mutual influence on TK induction depends further on the time of addition of the superinfecting virus: the effect of the second virus can still be observed when given 6 hours after primary infection. Identical phenomena can be observed using combinations with HSV type 2 or Pseudorabies viruses. The ability of HSV to induce TK is …
Coupled experiment/simulation approach for the design of radiation-hardened rare-earth doped optical fibers and amplifiers
2011
We developed an approach to design radiation-hardened rare earth -doped fibers and amplifiers. This methodology combines testing experiments on these devices with particle swarm optimization (PSO) calculations. The composition of Er/Yb-doped phosphosilicate fibers was improved by introducing Cerium inside their cores. Such composition strongly reduces the amplifier radiation sensitivity, limiting its degradation: we observed a gain decreasing from 19 dB to 18 dB after 50 krad whereas previous studies reported higher degradations up to 0°dB at such doses. PSO calculations, taking only into account the radiation effects on the absorption efficiency around the pump and emission wavelengths, co…
Micro-Raman investigation of X or gamma irradiated Ge doped fibers
2011
International audience; Micro-Raman spectra have been recorded on Ge doped optical fibers before and after 10 keV-X or c-ray irradiation up to doses of 1 MGy (X-ray) or 7.8 MGy (-ray). Our data provide evidence that, at such dose levels, the glass matrix is not modified in a detectable way. We observed that varying the Ge doping levels from 0 to about 11 wt.%, X or radiation sensitivity of the overall matrix remains unchanged. Such results are observed for fibers obtained with drawing conditions within the usual range used for the fabrication of specialty fibers as radiation-tolerant waveguides. Our data support the potentiality of fiberbased sensors using glass properties, e.g. Raman sc…
Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2
2009
International audience; We investigated the effects of 10-keV X-ray radiation on the transmission properties of F-doped optical fibers in the 200–850 nm range of wavelengths (1.5–6 eV). We also studied the influence of pre-loading this kind of fibers with hydrogen on its radiation sensitivity. Our results showed that, for our experimental conditions (pre-treatment with H2 several months before irradiation with diffusion of all the H2 out the fiber core and cladding before X-ray exposure), this pre-treatment increases the radiation-induced attenuation in the ultraviolet part (200–300 nm) of the spectrum. A previous H2-loading has no influence at greater wavelengths. The nature of the radiati…