Search results for "rational solutions"
showing 7 items of 17 documents
Rational solutions to the KPI equation and multi rogue waves
2016
Abstract We construct here rational solutions to the Kadomtsev–Petviashvili equation (KPI) as a quotient of two polynomials in x , y and t depending on several real parameters. This method provides an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2 N ( N + 1 ) in x , y and t depending on 2 N − 2 real parameters for each positive integer N . We give explicit expressions of the solutions in the simplest cases N = 1 and N = 2 and we study the patterns of their modulus in the ( x , y ) plane for different values of time t and parameters.
Ancora sulle "esplosive palatali" nelle inchieste dell'Atlante Linguistico del Mediterraneo (ALM): i punti albanesi
2021
Tra i «Problemi redazionali» emersi in fase di controllo e organizzazione dei materiali giunti dalla campagna di rilevamenti dell’Atlante Linguistico del Mediterraneo (ALM), Berruto (1971-1973) rileva la proliferazione e l’eterogeneità di alcune scelte grafemiche operate da diversi raccoglitori che, impegnati in una trascrizione più o meno puntuale delle risposte ottenute, avevano interpretato e risolto variamente alcune delle indicazioni previste nel sistema di trascrizione fonetica che accompagnava il Questionario. Particolarmente complesso era emerso il quadro relativo alla trascrizione di alcune consonanti del settore “palatale”, per le quali i grafemi (e i foni a essi corrispondenti) p…
Rational solutions to the mKdV equation associated to particular polynomials
2021
International audience; Rational solutions to the modified Korteweg-de Vries (mKdV) equation are given in terms of a quotient of determinants involving certain particular polynomials. This gives a very efficient method to construct solutions. We construct very easily explicit expressions of these rational solutions for the first orders n = 1 until 10.
The mKdV equation and multi-parameters rational solutions
2021
Abstract N -order solutions to the modified Korteweg–de Vries (mKdV) equation are given in terms of a quotient of two wronskians of order N depending on 2 N real parameters. When one of these parameters goes to 0, we succeed to get for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2 N real parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 6 .
8-parameter solutions of fifth order to the Johnson equation
2019
We give different representations of the solutions of the Johnson equation with parameters. First, an expression in terms of Fredholm determinants is given; we give also a representation of the solutions written as a quotient of wronskians of order 2N. These solutions of order N depend on 2N − 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polyno-mials of degree 2N (N +1) in x, t and 4N (N +1) in y depending on 2N −2 parameters. Here, we explicitly construct the expressions of the rational solutions of order 5 depending on 8 real parameters and we study the patterns of their modulus in the plane (x, y) and their …
From first to fourth order rational solutions to the Boussinesq equation
2020
Rational solutions to the Boussinesq equation are constructed as a quotient of two polynomials in x and t. For each positive integer N , the numerator is a polynomial of degree N (N + 1) − 2 in x and t, while the denominator is a polynomial of degree N (N + 1) in x and t. So we obtain a hierarchy of rational solutions depending on an integer N called the order of the solution. We construct explicit expressions of these rational solutions for N = 1 to 4.
Solutions to the Gardner equation with multi-parameters and the rational case
2022
We construct solutions to the Gardner equation in terms of trigonometric and hyperbolic functions, depending on several real parameters. Using a passage to the limit when one of these parameters goes to 0, we get, for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2N parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 3. We easily deduce solutions to the mKdV equation in terms of wronskians as well as rational solutions depending on 2N real parameters.