Search results for "reaction-diffusion"
showing 5 items of 15 documents
Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth
2015
We focus on the morphochemical reaction–diffusion model introduced in Bozzini et al. (2013) and carry out a nonlinear bifurcation analysis with the aim to characterize the shape and the amplitude of the patterns arising as the result of Turing instability of the physically relevant equilibrium. We perform a weakly nonlinear multiple scales analysis, and derive the normal form equations governing the amplitude of the patterns. These amplitude equations allow us to construct relevant solutions of the model equations and reveal the presence of multiple branches of stable solutions arising as the result of subcritical bifurcations. Hysteretic type phenomena are highlighted also through numerica…
Nonexistence Results for Higher Order Fractional Differential Inequalities with Nonlinearities Involving Caputo Fractional Derivative
2021
Higher order fractional differential equations are important tools to deal with precise models of materials with hereditary and memory effects. Moreover, fractional differential inequalities are useful to establish the properties of solutions of different problems in biomathematics and flow phenomena. In the present work, we are concerned with the nonexistence of global solutions to a higher order fractional differential inequality with a nonlinearity involving Caputo fractional derivative. Namely, using nonlinear capacity estimates, we obtain sufficient conditions for which we have no global solutions. The a priori estimates of the structure of solutions are obtained by a precise analysis …
On Some Applications of Nonlinear Differential Equations in Image Processing: Concepts and Electronic Implementation
2011
International audience
Dynamiques de populations en milieu hétérogène : modèles et estimation de paramètres
2017
Prod 2017-344i SPE équipe EA GESTAD INRA; National audience; Cet exposé traite de (i) la modélisation de dynamiques de populations dans des paysages hétérogènes, (ii) la modélisation des paysages eux-mêmes, (iii) l'estimation des paramètres de ces modèles à partir de données d'abondance ou de données génétiques. Nous nous concentrerons sur deux grandes classes de modèles de dynamique des populations : les modèles individu-centrés basés sur des équations différentielles stochastiques, et les modèles de réaction-diffusion. Après une introduction du lien entre ces approches, 5 illustrations issues des projets sont présentées: - modélisation de paysages hétérogènes fragmentés, via l’outil MULTI…
A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne-Weinberger inequality
2015
We consider evolutionary reaction-diffusion problem with mixed Dirichlet--Robin boundary conditions. For this class of problems, we derive two-sided estimates of the distance between any function in the admissible energy space and exact solution of the problem. The estimates (majorants and minorants) are explicitly computable and do not contain unknown functions or constants. Moreover, it is proved that the estimates are equivalent to the energy norm of the deviation from the exact solution.