Search results for "regularity"
showing 10 items of 98 documents
The Wage Curve, Once More with Feeling: Bayesian Model Averaging of Heckit Models
2018
The sensitivity of the wage curve to sample-selection and model uncertainty was evaluated with Bayesian methods. More than 8000 Heckit wage curves were estimated using data from the 2017 household survey of Bolivia. After averaging the estimates with the posterior probability of each model being true, the wage curve elasticity in Bolivia is close to -0.01. This result suggests that in this country the wage curve is inelastic and does not follow the international statistical regularity of wage curves.
A singular (p,q)-equation with convection and a locally defined perturbation
2021
We consider a parametric Dirichlet problem driven by the (p,q)-Laplacian and a reaction which is gradient dependent (convection) and the competing effects of two more terms, one a parametric singular term and a locally defined perturbation. We show that for all small values of the parameter the problem has a positive smooth solution.
Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems
2020
We consider a parametric nonlinear Robin problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential. The reaction term is $$(p-1)$$-superlinear but need not satisfy the usual Ambrosetti–Rabinowitz condition. We look for positive solutions and prove a bifurcation-type result for the set of positive solutions as the parameter $$\lambda >0$$ varies. Also we prove the existence of a minimal positive solution $$u_\lambda ^*$$ and determine the monotonicity and continuity properties of the map $$\lambda \rightarrow u_\lambda ^*$$.
Boundary Regularity for the Porous Medium Equation
2018
We study the boundary regularity of solutions to the porous medium equation $u_t = \Delta u^m$ in the degenerate range $m>1$. In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general -- not necessarily cylindrical -- domains in ${\bf R}^{n+1}$. One of our fundamental tools is a new strict comparison principle between sub- and superpara…
On the interior regularity of weak solutions to the 2-D incompressible Euler equations
2016
We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ for weak solutions in the energy space $$L_t^\infty L_x^2$$ , satisfying appropriate vorticity estimates. We also obtain impr…
Nonlinear balayage on metric spaces
2009
We develop a theory of balayage on complete doubling metric measure spaces supporting a Poincaré inequality. In particular, we are interested in continuity and p-harmonicity of the balayage. We also study connections to the obstacle problem. As applications, we characterize regular boundary points and polar sets in terms of balayage. Original Publication:Anders Björn, Jana Björn, Tero Mäkäläinen and Mikko Parviainen, Nonlinear balayage on metric spaces, 2009, Nonlinear Analysis, (71), 5-6, 2153-2171.http://dx.doi.org/10.1016/j.na.2009.01.051Copyright: Elsevier Science B.V., Amsterdam.http://www.elsevier.com/
Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces
2003
Abstract We use the heat equation to establish the Lipschitz continuity of Cheeger-harmonic functions in certain metric spaces. The metric spaces under consideration are those that are endowed with a doubling measure supporting a (1,2)-Poincare inequality and in addition supporting a corresponding Sobolev–Poincare-type inequality for the modification of the measure obtained via the heat kernel. Examples are given to illustrate the necessity of our assumptions on these spaces. We also provide an example to show that in the general setting the best possible regularity for the Cheeger-harmonic functions is Lipschitz continuity.
Positive solutions for the Neumann p-Laplacian
2017
We examine parametric nonlinear Neumann problems driven by the p-Laplacian with asymptotically ( $$p-1$$ )-linear reaction term f(z, x) (as $$x\rightarrow +\infty $$ ). We determine the existence, nonexistence and minimality of positive solutions as the parameter $$\lambda >0$$ varies.
The Poisson embedding approach to the Calderón problem
2020
We introduce a new approach to the anisotropic Calder\'on problem, based on a map called Poisson embedding that identifies the points of a Riemannian manifold with distributions on its boundary. We give a new uniqueness result for a large class of Calder\'on type inverse problems for quasilinear equations in the real analytic case. The approach also leads to a new proof of the result by Lassas and Uhlmann (2001) solving the Calder\'on problem on real analytic Riemannian manifolds. The proof uses the Poisson embedding to determine the harmonic functions in the manifold up to a harmonic morphism. The method also involves various Runge approximation results for linear elliptic equations.
Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
2020
AbstractWe consider a parametric nonlinear Robin problem driven by the negativep-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation$$f(z,\cdot )$$f(z,·)is$$(p-1)$$(p-1)-sublinear and then the case where it is$$(p-1)$$(p-1)-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter$$\lambda \in {\mathbb {R}}$$λ∈Rwhich we specify exactly in terms of principal eigenvalue of the differential operator.