Search results for "reinforcement learning"

showing 10 items of 95 documents

Robust Adaptive Modulation and Coding (AMC) selection in LTE systems using reinforcement learning

2014

Adaptive Modulation and Coding (AMC) in LTE networks is commonly employed to improve system throughput by ensuring more reliable transmissions. Most of existing AMC methods select the modulation and coding scheme (MCS) using pre-computed mappings between MCS indexes and channel quality indicator (CQI) feedbacks that are periodically sent by the receivers. However, the effectiveness of this approach heavily depends on the assumed channel model. In addition CQI feedback delays may cause throughput losses. In this paper we design a new AMC scheme that exploits a reinforcement learning algorithm to adjust at run-time the MCS selection rules based on the knowledge of the effect of previous AMC d…

Engineeringreinforcement learningSettore ING-INF/03 - Telecomunicazionibusiness.industryLink adaptationchannel qualityChannel modelsLTE channel quality adaptive modulation and coding (AMC) reinforcement learning performance evaluation.performance evaluationLTERobustness (computer science)Electronic engineeringReinforcement learningDecision processbusinessReinforcement learning algorithmCoding (social sciences)adaptive modulation and coding (AMC)
researchProduct

Towards a Deep Reinforcement Learning Approach for Tower Line Wars

2017

There have been numerous breakthroughs with reinforcement learning in the recent years, perhaps most notably on Deep Reinforcement Learning successfully playing and winning relatively advanced computer games. There is undoubtedly an anticipation that Deep Reinforcement Learning will play a major role when the first AI masters the complicated game plays needed to beat a professional Real-Time Strategy game player. For this to be possible, there needs to be a game environment that targets and fosters AI research, and specifically Deep Reinforcement Learning. Some game environments already exist, however, these are either overly simplistic such as Atari 2600 or complex such as Starcraft II fro…

EntertainmentCognitive sciencebusiness.industryComputer scienceDeep learningComputingMilieux_PERSONALCOMPUTINGQ-learningReinforcement learningArtificial intelligencebusinessGame player
researchProduct

Learning Processes in the Control Theory

1994

Error-driven learningArts and Humanities (miscellaneous)Control theorybusiness.industryAlgorithmic learning theoryDevelopmental and Educational PsychologyReinforcement learningArtificial intelligencebusinessPsychologyAction learningApplied PsychologyApplied Psychology
researchProduct

Can Interpretable Reinforcement Learning Manage Prosperity Your Way?

2022

Personalisation of products and services is fast becoming the driver of success in banking and commerce. Machine learning holds the promise of gaining a deeper understanding of and tailoring to customers’ needs and preferences. Whereas traditional solutions to financial decision problems frequently rely on model assumptions, reinforcement learning is able to exploit large amounts of data to improve customer modelling and decision-making in complex financial environments with fewer assumptions. Model explainability and interpretability present challenges from a regulatory perspective which demands transparency for acceptance; they also offer the opportunity for improved insight into and unde…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceGeneral Earth and Planetary SciencesAI in banking; personalized services; prosperity management; explainable AI; reinforcement learning; policy regularisationVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550General Environmental ScienceMachine Learning (cs.LG)AI; Volume 3; Issue 2; Pages: 526-537
researchProduct

Deep Q-Learning With Q-Matrix Transfer Learning for Novel Fire Evacuation Environment

2021

We focus on the important problem of emergency evacuation, which clearly could benefit from reinforcement learning that has been largely unaddressed. Emergency evacuation is a complex task which is difficult to solve with reinforcement learning, since an emergency situation is highly dynamic, with a lot of changing variables and complex constraints that makes it difficult to train on. In this paper, we propose the first fire evacuation environment to train reinforcement learning agents for evacuation planning. The environment is modelled as a graph capturing the building structure. It consists of realistic features like fire spread, uncertainty and bottlenecks. We have implemented the envir…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer Science - Artificial IntelligenceComputer scienceQ-learningComputingMilieux_LEGALASPECTSOFCOMPUTINGSystems and Control (eess.SY)02 engineering and technologyOverfittingMachine Learning (cs.LG)FOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringReinforcement learningElectrical and Electronic EngineeringVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550business.industry020206 networking & telecommunicationsComputer Science ApplicationsHuman-Computer InteractionArtificial Intelligence (cs.AI)Control and Systems EngineeringShortest path problemEmergency evacuationComputer Science - Systems and Control020201 artificial intelligence & image processingArtificial intelligenceTransfer of learningbusinessSoftwareIEEE Transactions on Systems, Man, and Cybernetics: Systems
researchProduct

Deep RTS: A Game Environment for Deep Reinforcement Learning in Real-Time Strategy Games

2018

Reinforcement learning (RL) is an area of research that has blossomed tremendously in recent years and has shown remarkable potential for artificial intelligence based opponents in computer games. This success is primarily due to the vast capabilities of convolutional neural networks, that can extract useful features from noisy and complex data. Games are excellent tools to test and push the boundaries of novel RL algorithms because they give valuable insight into how well an algorithm can perform in isolated environments without the real-life consequences. Real-time strategy games (RTS) is a genre that has tremendous complexity and challenges the player in short and long-term planning. The…

FOS: Computer and information sciencesComputer Science - Machine Learningbusiness.industryComputer scienceComputer Science - Artificial IntelligenceComputingMilieux_PERSONALCOMPUTING02 engineering and technologyConvolutional neural networkAccelerated learningMachine Learning (cs.LG)03 medical and health sciences0302 clinical medicineArtificial Intelligence (cs.AI)Real-time strategy0202 electrical engineering electronic engineering information engineeringReinforcement learning020201 artificial intelligence & image processingArtificial intelligencebusiness030217 neurology & neurosurgery
researchProduct

Expanding the Active Inference Landscape: More Intrinsic Motivations in the Perception-Action Loop

2018

Active inference is an ambitious theory that treats perception, inference and action selection of autonomous agents under the heading of a single principle. It suggests biologically plausible explanations for many cognitive phenomena, including consciousness. In active inference, action selection is driven by an objective function that evaluates possible future actions with respect to current, inferred beliefs about the world. Active inference at its core is independent from extrinsic rewards, resulting in a high level of robustness across e.g.\ different environments or agent morphologies. In the literature, paradigms that share this independence have been summarised under the notion of in…

FOS: Computer and information sciencesComputer scienceComputer Science - Artificial Intelligencepredictive informationBiomedical EngineeringInferenceSystems and Control (eess.SY)02 engineering and technologyAction selectionI.2.0; I.2.6; I.5.0; I.5.1lcsh:RC321-57103 medical and health sciences0302 clinical medicineactive inferenceArtificial IntelligenceFOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringFormal concept analysisMethodsperception-action loopuniversal reinforcement learningintrinsic motivationlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryFree energy principleCognitive scienceRobotics and AII.5.0I.5.1I.2.6Partially observable Markov decision processI.2.0Artificial Intelligence (cs.AI)Action (philosophy)empowermentIndependence (mathematical logic)free energy principleComputer Science - Systems and Control020201 artificial intelligence & image processingBiological plausibility62F15 91B06030217 neurology & neurosurgeryvariational inference
researchProduct

Expert Q-learning: Deep Reinforcement Learning with Coarse State Values from Offline Expert Examples

2022

In this article, we propose a novel algorithm for deep reinforcement learning named Expert Q-learning. Expert Q-learning is inspired by Dueling Q-learning and aims at incorporating semi-supervised learning into reinforcement learning through splitting Q-values into state values and action advantages. We require that an offline expert assesses the value of a state in a coarse manner using three discrete values. An expert network is designed in addition to the Q-network, which updates each time following the regular offline minibatch update whenever the expert example buffer is not empty. Using the board game Othello, we compare our algorithm with the baseline Q-learning algorithm, which is a…

FOS: Computer and information sciencesImitation LearningComputer Science - Machine LearningArtificial Intelligence (cs.AI)Deep LearningComputer Science - Artificial IntelligenceSemi-supervised LearningGeneral MedicineVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Reinforcement LearningMachine Learning (cs.LG)
researchProduct

On the use of Deep Reinforcement Learning for Visual Tracking: a Survey

2021

This paper aims at highlighting cutting-edge research results in the field of visual tracking by deep reinforcement learning. Deep reinforcement learning (DRL) is an emerging area combining recent progress in deep and reinforcement learning. It is showing interesting results in the computer vision field and, recently, it has been applied to the visual tracking problem yielding to the rapid development of novel tracking strategies. After providing an introduction to reinforcement learning, this paper compares recent visual tracking approaches based on deep reinforcement learning. Analysis of the state-of-the-art suggests that reinforcement learning allows modeling varying parts of the tracki…

General Computer ScienceComputer scienceFeature extractionMachine learningcomputer.software_genreField (computer science)video-surveillanceMinimum bounding boxReinforcement learningGeneral Materials ScienceSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionideep reinforcement learningComputer vision machine learning video-surveillance deep reinforcement learning visual tracking.business.industryGeneral EngineeringTracking systemvisual trackingVisualizationActive appearance modelTK1-9971machine learningEye trackingComputer visionArtificial intelligenceElectrical engineering. Electronics. Nuclear engineeringbusinesscomputer
researchProduct

Interpretable Option Discovery Using Deep Q-Learning and Variational Autoencoders

2021

Deep Reinforcement Learning (RL) is unquestionably a robust framework to train autonomous agents in a wide variety of disciplines. However, traditional deep and shallow model-free RL algorithms suffer from low sample efficiency and inadequate generalization for sparse state spaces. The options framework with temporal abstractions [18] is perhaps the most promising method to solve these problems, but it still has noticeable shortcomings. It only guarantees local convergence, and it is challenging to automate initiation and termination conditions, which in practice are commonly hand-crafted.

Generalizationbusiness.industryComputer scienceAutonomous agentQ-learningSample (statistics)Machine learningcomputer.software_genreLocal convergenceVariety (cybernetics)Reinforcement learningArtificial intelligenceCluster analysisbusinesscomputer
researchProduct