Search results for "resolve"
showing 10 items of 258 documents
PMSM Drives Sensorless Position Control with Signal Injection and Neural Filtering
2009
Vector Field Oriented Control (FOC) is one of the best control methods for high-dynamic electrical drives. To avoid the adoption of the speed/position sensor (resolver/encoder), a sensorless technique should be used. Among the various sensorless methods in literature, those based on machine saliency detection by signal injection seem to be most useful for thier giving the possibility of closing the position control loop. This paper proposes a method for enhancing both rotating and pulsating voltage carrier injection methods by a neural adaptive band filter. Results show the goodness of the proposed solution.
A New Digital Demodulator for Sensorless Control of Electrical Drives with Permanent Magnet Synchronous Motors
2008
This paper deals a new digital demodulator algorithm for sensorless control of interior permanent magnet synchronous motors (IPMS) based on the estimation of speed and rotor angular position. To this aim a signal similar to that generated by a resolver connected to the shaft of the motor is obtained injecting high frequency stator currents. A new digital algorithm has been designed and set up to demodulate the above signal whose implementation can be carried out on the same DSP that processes the whole control algorithm. The proposed demodulator scheme is presented and justified on the theoretic point of view. Simulations results finally validate the effectiveness of the demodulator within …
New statistical post processing approach for precise fault and defect localization in TRI database acquired on complex VLSI
2013
International audience; Timing issue, missing or extra state transitions or unusual consumption can be detected and localized by Time Resolved Imaging (TRI) database analysis. Although, long test pattern can challenge this process. The number of photons to process rapidly increases and the acquisition time to have a good signal over noise ratio (SNR) can be prohibitive. As a result, the tracking of the defect emission signature inside a huge database can be quite complicated. In this paper, a method based on data mining techniques is suggested to help the TRI end user to have a good idea about where to start a deeper analysis of the integrated circuit, even with such complex databases.
A new high accuracy software based resolver-to-digital converter
2004
Tracking resolver-to-digital conversion (R/D converter or simply RDC) has emerged as one of the most robust method for obtaining high resolution position and angular speed information from resolvers. In this paper a low cost software based RDC is presented. The main features are: high accuracy, simple set up, high reliability and stability and good performances. Some experimental results, showing the capabilities of the proposed system, are presented and discussed. An output signal comparison between the proposed RDC and a commercial encoder is also presented.
Implementing AI Ethics in Practice: An Empirical Evaluation of the RESOLVEDD Strategy
2020
As Artificial Intelligence (AI) systems exert a growing influence on society, real-life incidents begin to underline the importance of AI Ethics. Though calls for more ethical AI systems have been voiced by scholars and the general public alike, few empirical studies on the topic exist. Similarly, few tools and methods designed for implementing AI ethics into practice currently exist. To provide empirical data into this on-going discussion, we empirically evaluate an existing method from the field of business ethics, the RESOLVEDD strategy, in the context of ethical system development. We evaluated RESOLVEDD by means of a multiple case study of five student projects where its use was given …
Pulse trains produced by phase-modulation of ultrashort optical pulses: tailoring and characterization
2009
1094-4087; In this paper, creation of pulse doublets and pulse trains by spectral phase modulation of ultrashort optical pulses is investigated. Pulse doublets with specific features are generated through step-like and triangular spectral phase modulation, whereas sequences of pulses with controllable delay and amplitude are produced via sinusoidal phase modulations. A temporal analysis of this type of tailored pulses is exposed and a complete characterization with the SPIDER technique (Spectral Phase Interferometry for Direct Electric-field Reconstruction) is presented. (C) 2004 Optical Society of America.
Formation of ultrashort triangular pulses in optical fibers
2014
Specialty shape ultrashort optical pulses, and triangular pulses in particular, are of great interest in optical signal processing. Compact fiber-based techniques for producing the special pulse waveforms from Gaussian or secant pulses delivered by modern ultrafast lasers are in demand in telecommunications. Using the nonlinear Schr¨odinger equation in an extended form the transformation of ultrashort pulses in a fiber towards triangular shape is characterized by the misfit parameter under variety of incident pulse shapes, energies, and chirps. It is shown that short (1-2 m) conventional single mode fiber can be used for triangular pulse formation in the steady-state regime without any pre-…
Characterization of protofibrillar aggregates of bovine serum albumin by tryptophans fluorescence lifetime
2010
We report an experimental study on the thermally induced aggregation of Bovine Serum Albumin at basic pH. In these conditions, we observe the growth of simple protofibrillar structures via the formation of intermolecular beta-sheets promoted by the increased electrostatic repulsion. Here we present a study on the time resolved fluorescence of Tryptophans (Trp) along the aggregation kinetics in the above reported conditions. We use the lifetimes distribution approach as a useful tool for the interpretation of the fluorescence decay in terms of protein conformational substates and interconversion dynamics. Trp fluorescence lifetime depends from protein conformations, also in relation with sol…
Phonon Driven Floquet Matter.
2018
The effect of electron–phonon coupling in materials can be interpreted as a dressing of the electronic structure by the lattice vibration, leading to vibrational replicas and hybridization of electronic states. In solids, a resonantly excited coherent phonon leads to a periodic oscillation of the atomic lattice in a crystal structure bringing the material into a nonequilibrium electronic configuration. Periodically oscillating quantum systems can be understood in terms of Floquet theory, which has a long tradition in the study of semiclassical light-matter interaction. Here, we show that the concepts of Floquet analysis can be applied to coherent lattice vibrations. This coupling leads to p…
Survival of Floquet–Bloch States in the Presence of Scattering
2021
Floquet theory has spawned many exciting possibilities for electronic structure control with light, with enormous potential for future applications. The experimental demonstration in solids, however, remains largely unrealized. In particular, the influence of scattering on the formation of Floquet-Bloch states remains poorly understood. Here we combine time- and angle-resolved photoemission spectroscopy with time-dependent density functional theory and a two-level model with relaxation to investigate the survival of Floquet-Bloch states in the presence of scattering. We find that Floquet-Bloch states will be destroyed if scattering-activated by electronic excitations-prevents the Bloch elec…