Search results for "rfa"

showing 10 items of 11106 documents

Synthesis of Eu<sup>2+</sup> and Dy<sup>3+</sup> Doped Strontium Aluminates and their Properties

2016

Strontium aluminate phosphors were synthesized by the solution combustion method using citric acid, urea or glycine as reducing agent and europium and dysprosium as dopants. The content of both dopants was in the range of 1 – 2 mol%. Dependence of phase composition, crystallite size and specific surface area on calcinations temperature, used reducing agents and dopants were determined. Luminescent properties of the calcinated at 1300 °C powders contained SrAl2O4 (90 %) and Sr4Al24O25 (10%) phases with crystallite size of 80 nm were determined.

010302 applied physicsStrontiumMaterials scienceReducing agentMechanical EngineeringInorganic chemistryStrontium aluminatechemistry.chemical_elementPhosphor02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundchemistryMechanics of MaterialsSpecific surface area0103 physical sciencesDysprosiumGeneral Materials ScienceCrystallite0210 nano-technologyEuropiumKey Engineering Materials
researchProduct

Deposition of binder-free oxygen-vacancies NiCo2O4 based films with hollow microspheres via solution precursor thermal spray for supercapacitors

2019

Abstract Hollow micro-/nanostructures and oxygen vacancies are highly desirable for supercapacitors due to high active surface area and outstanding electrochemical properties. In order to benefiting from the both effect, binder-free oxygen-vacancies NiCo2O4 based films with hollow microspheres were pioneering directly deposited via one kind thermal spray technology, named solution precursor thermal spray (SPTS) process. To our best knowledge, the rapid one-step SPTS route was firstly employed to synthesize and deposit NiCo2O4 films for supercapacitor applications. The CV data clearly demonstrated that the specific capacitances of more oxygen-deficient NiCo2O4 electrodes with hollow microsph…

010302 applied physicsSupercapacitorHorizontal scan rateNanostructureMaterials scienceProcess Chemistry and Technology02 engineering and technology021001 nanoscience & nanotechnologyElectrochemistry01 natural sciences7. Clean energyCapacitanceSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineering0103 physical sciencesElectrodeMaterials ChemistryCeramics and Composites[CHIM]Chemical Sciences0210 nano-technologyThermal sprayingCurrent densityCeramics International
researchProduct

Improving the high temperature oxidation resistance of Ti-β21S by mechanical surface treatment

2020

The improvement of the high temperature oxidation resistance of titanium alloys is currently a technological challenge. Mechanical surface treatments as shot-peening (SP) have shown their ability to improve the behaviour of pure zirconium and titanium. However, shot-peening treatments can induce a significant surface contamination. Laser shock peening (LSP) appears as a good alternative. Here, we have investigated the effect of SP and LSP treatments on the HT oxidation behavior of Ti-β21S. Samples treated by these methods have been compared to untreated ones for long exposures (3000 h) at 700 °C in dry air. The samples placed in a furnace at 700 °C were periodically extracted to be weighed.…

010302 applied physicsSurface (mathematics)Materials scienceChemical engineering020209 energy0103 physical sciences0202 electrical engineering electronic engineering information engineering02 engineering and technologyTA1-2040Engineering (General). Civil engineering (General)01 natural sciencesOxidation resistanceMATEC Web of Conferences
researchProduct

Effect of surface disorder on the domain structure of PLZT ceramics

2017

ABSTRACTPb1-xLax(Zr0.65Ti0.35)1-x/4O3 (PLZT x/65/35) ceramics were studied by Piezoresponse Force Microscopy in order to understand the origin of domain structure as a function of La content. We show that the domain topology is mainly determined by the composition and grain size. The characteristic correlation length decreases with increasing La content, being sensitive also to the synthesis method. The behavior of the correlation length is linked to the macroscopic properties, showing a strong increase of disorder with La doping. The roughness exponent for the domain wall in PLZT 9/65/35 is close to 2/3 indicating 1D character of domain walls in relaxors.

010302 applied physicsSurface (mathematics)Materials scienceCondensed matter physicsDoping02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesGrain sizeElectronic Optical and Magnetic MaterialsDomain wall (magnetism)Piezoresponse force microscopyvisual_art0103 physical sciencesDomain (ring theory)Roughness exponentvisual_art.visual_art_mediumCeramic0210 nano-technologyFerroelectrics
researchProduct

Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation

2009

010302 applied physicsSurface (mathematics)Materials sciencebusiness.industryScanning electron microscope02 engineering and technologyElectron021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsOptics0103 physical sciencesOptoelectronics0210 nano-technologybusinessPhysical Review B
researchProduct

Finite element analysis of stress concentration between surface coated implants and non surface coated implants - An in vitro study.

2019

Background To determine qualitative comparison in stress distribution between surface coated implants and non surface coated implants using 2 different lengths and vertical, oblique, and lateral forces. Material and Methods 3 dimensional finite element study was carried out at first molar site with 4 surface coated and 4 non surface coated implants using mimic 8.11, solid edge 2004, hypermesh 9.0, and ansys12.1 software. Results The pattern of stress distribution was almost similar between vertical and oblique loading but varied with lateral loads between surface coated and non surface coated implants. As the length of the implants increased stress concentration had no significant variation…

010302 applied physicsSurface (mathematics)Prosthetic DentistryMaterials scienceResearch02 engineering and technologyEdge (geometry)021001 nanoscience & nanotechnology01 natural sciencesFinite element methodStress (mechanics)Surface coatingUNESCO::CIENCIAS MÉDICAS0103 physical sciencesComposite material0210 nano-technologyGeneral DentistryAbutment (dentistry)Stress concentrationAbutment ScrewJournal of clinical and experimental dentistry
researchProduct

Composition dependence ofSi1−xGexsputter yield

2005

Sputtering yields have been measured for unstrained ${\mathrm{Si}}_{1\ensuremath{-}x}{\mathrm{Ge}}_{x}$ $(x=0--1)$ alloys when bombarded with ${\mathrm{Ar}}^{+}$ ions within the linear cascade regime. Nonlinear S-shape dependence of the sputter yield as a function of the alloy composition has been revealed. The dependence is analyzed within the frameworks of the cascade theory conventionally accepted to be the most systematic to date theoretical approach in sputtering. In view of a linear composition dependence predicted for the sputter yield by the cascade theory adapted for polyatomic substrates, the nonlinearity observed in our experiments is shown to be related to the alloying effect on…

010302 applied physicsYield (engineering)Materials scienceDegree (graph theory)Polyatomic ionBinding energy02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurface energyElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceSputtering0103 physical sciencesAtomAtomic physics0210 nano-technologyEnergy (signal processing)Physical Review B
researchProduct

Atomic layer deposition of aluminum oxide on modified steel substrates

2016

Abstract Al 2 O 3 thin films were grown by atomic layer deposition to thicknesses ranging from 10 to 90 nm on flexible steel substrates at 300 °C using Al(CH 3 ) 3 and H 2 O as precursors. The films grown to thicknesses 9–90 nm covered the rough steel surfaces uniformly, allowing reliable evaluation of their dielectric permittivity and electrical current densities with appreciable contact yield. Mechanical behavior of the coatings was evaluated by nanoindentation. The maximum hardness values of the Al 2 O 3 films on steel reached 12 GPa and the elastic modulus exceeded 280 GPa.

010302 applied physicsYield (engineering)Materials scienceMetallurgy02 engineering and technologySurfaces and InterfacesGeneral ChemistryChemical vapor depositionNanoindentation021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsAtomic layer deposition0103 physical sciencesMaterials ChemistrySurface modificationThin filmComposite material0210 nano-technologyElastic modulusAluminum oxideSurface and Coatings Technology
researchProduct

Correlation between surface engineering and deformation response of some natural polymer fibrous systems

2018

Surfaces of bamboo derived cellulosic fibrous systems have been modified by air-plasma treatment. Their deformational response was studied to establish the relationship between their three-dimensional profile and permanent deformation as a measure of their comfort properties since the fibrous system made of natural polymer comes into contact with the skin. The composite should have a permanent deformation close to zero, in order to be, in terms of dimensions, as stable as possible. By analyzing the area of 1 cm2 using a Universal Surface Tester (UST), different 3D surface diagrams and surface roughness values were obtained. This type of surface investigation provides relevant information a…

010302 applied physicschemistry.chemical_classificationBambooMaterials science02 engineering and technologyPolymerSurface engineering021001 nanoscience & nanotechnology01 natural scienceschemistry0103 physical sciencesSurface modificationGeneral Materials ScienceSurface geometryComposite materialDeformation (engineering)0210 nano-technology
researchProduct

Influence of the MgO barrier thickness on the lifetime characteristics of magnetic tunnelling junctions for sensors

2016

Magnetic tunnelling junctions increasingly enter the market for magnetic sensor applications. Thus, technological parameters such as the lifetime characteristics become more and more important. Here, an analysis of the lifetime characteristics of magnetic tunnelling junctions using the Weibull statistical distribution for CoFeB/MgO/CoFeB junctions is presented. The Weibull distribution is governed by two parameters, the characteristic lifetime η of the population and the shape parameter β, which gives information about the presence of an infant mortality. The suitability of the Weibull distribution is demonstrated for the description of dielectric breakdown processes in MgO-based tunnelling…

010302 applied physicseducation.field_of_studyMaterials scienceAcoustics and UltrasonicsDielectric strengthCondensed matter physicsAnnealing (metallurgy)Population02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesShape parameterSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials0103 physical sciences0210 nano-technologyeducationLow voltageQuantum tunnellingWeibull distributionVoltageJournal of Physics D: Applied Physics
researchProduct