Search results for "salinity gradient"

showing 10 items of 60 documents

Maximum Net Power Density Conditions in Reverse Electrodialysis Stacks

2018

Reverse Electrodialysis (RED) harvests electrical energy from a salinity gradient. The maximum obtainable net power density (NPD) depends on many physical and geometric variables. Some have a monotonic (beneficial or detrimental) influence on NPD, and can be regarded as “scenario” variables chosen by criteria other than NPD maximization. Others, namely the thicknesses HCONC, HDIL and the velocities UCONC, UDIL in the concentrate and diluate channels, have contrasting effects, so that the NPD maximum is obtained for some intermediate values of these parameters. A 1-D model of a RED stack was coupled here with an optimization algorithm to determine the conditions of maximum NPD in the space o…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciReverse Electrodialysis Net power density Salinity Gradient Concentration Polarization Optimization Gradient AscentSettore ING-IND/19 - Impianti Nucleari
researchProduct

REVERSE ELECTRODIALYSIS HEAT ENGINE: Low-grade Waste Heat into Electricity

Our society is undergoing a progressive change about the life style and habits. The world population is continuously increasing with 7.6 billion of human beings in 2018, resulting in an increasingly demand of resources in terms of food, water and energy. The exploitation of the planet resources since the first Industrial Revolution, results today in an unsustainable condition, which requires fundamental changes. In particular, in the energy sector the adoption of fossil fuels as the main energy source for human beings’ activities resulted in a strong impact on our planet, leading to climate changes and environmental pollution. Nowadays these aspects have induced society to a substantial cha…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSalinity Gradient Heat EngineReverse ElectrodialysiWaste heat recovery.Regeneration UnitSalinity Gradient PowerThermolytic saltLow-grade heat
researchProduct

Modelling Reverse Electrodialysis process via Exergy Analysis

2017

Salinity Gradient Power Heat Engines (SGP-HEs) represent a novel technology to convert low grade waste heat into electricity. Reverse Electrodialysis Heat Engine (REDHE) is one of the possible application of this concept, where a common RED unit is coupled with a thermal regeneration unit supplied with waste heat to restore the salinity gradient of the streams to be fed back to the RED unit. In a RED unit, anion and cation exchange membranes (AEMs and CEMs) are alternatively stacked and interposed between salt solutions at different concentration generating an electric potential difference over each membrane along with a selective transport of cations and anions from the concentrated soluti…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/10 - Fisica Tecnica IndustrialeSalinity Gradient Power (SGP) Reverse Electrodialysis (RED) Exergy AnalysiEnergy productions Irreversibility
researchProduct

Exergy Analysis of Reverse Electrodialysis Heat Engine with Multi-Effect Distillation Regeneration Stage

2018

The increasing worldwide energy demand is rising the interest on alternative power production technologies based on renewable and emission-free energy sources. In this regard, the closed-loop reverse electrodialysis heat engine (RED-HE) is one of the most promising technologies currently under investigation. This technology produces electric power by harvesting the salinity gradient energy released from the controlled mixing of two artificial salt solutions with different concentrations. Low-grade heat (T < 100 °C), derived from any industrial process is used in a multi-effect distillation (MED) unit to restore the initial salinity gradient of the solutions. In this work, a comprehensive…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/10 - Fisica Tecnica IndustrialeSalinity Gradient Power (SGP) Reverse Electrodialysis (RED) Exergy Analysis Chemical Exergy Reverse Electrodialysis Heat Engine (RED-HE) Exergy efficiency
researchProduct

Performance of a RED system with ammonium hydrogen carbonate solutions

2016

The use of closed-loop salinity gradient power (SGP) technologies has been recently presented as a viable option to generate power using low-grade heat, by coupling a SGP unit with a thermally-driven regeneration process in a closed loop where artificial solutions can be adopted for the conversion of heat into power. Among these, the closed-loop reverse electrodialysis (RED) process presents a number of advantages such as the direct production of electricity, the extreme flexibility in operating conditions and the recently demonstrated large potentials for industrial scale-up. Ammonium hydrogen carbonate (NH4HCO3) is a salt suitable for such closed-loop RED process thanks to its particular …

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciMechanical engineeringSalt (chemistry)Ocean Engineering02 engineering and technology010501 environmental sciences7. Clean energy01 natural sciencesHeat-to-powerPhase (matter)Waste heatReversed electrodialysisReverse electrodialysiOsmotic powerSalinity gradient powerProcess engineeringAmmonium hydrogen carbonate0105 earth and related environmental sciencesWater Science and Technologychemistry.chemical_classificationSettore ING-IND/24 - Principi Di Ingegneria Chimicabusiness.industry021001 nanoscience & nanotechnologyPollution6. Clean waterPower (physics)Reverse Electrodialysis Salinity Gradient Power SGP heat engine Waste heat Ammonium hydrogen carbonateElectricity generationchemistryScientific method0210 nano-technologybusinessAmmonium hydrogen carbonate; Heat engine; Heat-to-power; Reverse electrodialysis; Salinity gradient powerHeat engine
researchProduct

REAPOWER – USE OF DESALINATION BRINE FOR POWER PRODUCTION THROUGH REVERSE ELECTRODIALYSIS

2015

Salinity gradient power (SGP) represents a viable renewable energy source associated with the mixing of two solutions of different salinities. Reverse electrodialysis (SGP-RE or RED) is a promising technology to exploit this energy source and directly generate electricity. However, although the principle of this technology is well known since several years, further R&D efforts are still necessary in order to explore the real potential of the SGP-RE process. With this regard, the aim of the REAPower project ( [GRAPHICS] ) is the development of an innovative system for power production by SGP-RE process, using sea (or brackish) water as a diluted solution and brine as a concentrate. The use o…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciOcean Engineering02 engineering and technology7. Clean energyDesalinationSalinity Gradient Power Reverse Electrodialysimodelling020401 chemical engineeringReversed electrodialysision-exchange membraneOsmotic power0204 chemical engineeringWater Science and TechnologyseawaterBrackish waterbusiness.industryChemistryEnvironmental engineeringSalinity Gradient Power Reverse Electrodialysis; RED; ion-exchange membrane; modelling; seawater; brine.021001 nanoscience & nanotechnologyREDPollutionbrine.6. Clean waterRenewable energybrineBrineElectricity0210 nano-technologybusinessEnergy source
researchProduct

Reverse Electrodialysis Process: Analysis of Optimal Conditions for Process Scale-up

2014

Reverse Electrodialysis (SGP-RE or RED) process has been widely accepted as a viable and promising technology to produce electric energy from salinity difference (i.e salinity gradient power - e.g. using river water/seawater, or seawater and concentrated brines). Recent R&D efforts demonstrated how an appropriate design of the SGP-RE unit and a suitable selection of process conditions may crucially enhance the process performance. With this regard, a process simulator was developed and validated with experimental data collected on a lab-scale unit, providing a new modelling tool for process optimisation. In this work, performed within the REAPower project (www.reapower.eu), the process simu…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti Chimicisea waterprocess simulatorSalinity Gradient Power; RED; sea water; brine; process simulator; model.REDmodel.Salinity Gradient Powerbrine
researchProduct

Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion

2017

Abstract A Reverse ElectroDialysis Heat Engine (REDHE) system operating with “thermolytic” ammonium hydrogen-carbonate (NH4HCO3) aqueous solutions as working fluids is studied. The engine is constituted by (i) a RED unit to produce electric power by mixing the solutions at different salinity and (ii) a thermally-driven regeneration unit including a stripping and an absorption column to restore the initial salinity gradient thus closing the cycle. In the present work only the RED unit and the stripping column are taken into account. In particular, a simplified integrated process model for the whole cycle was developed: it consists of (i) a lumped parameter model for the RED unit validated wi…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciStripping (chemistry)Salinity gradient power (SGP)020209 energyAnalytical chemistry02 engineering and technology7. Clean energyThermolytic saltIndustrial and Manufacturing EngineeringWaste heat recovery unitReversed electrodialysisThermal0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringClosed-loop reverse electrodialysiWaste heat recoveryAmmonium hydrogen carbonateCivil and Structural EngineeringPower densityHeat engineWaste managementChemistryMechanical EngineeringAmmonium hydrogen carbonate; Closed-loop reverse electrodialysis; Reverse ElectroDialysis Heat Engine (REDHE); Salinity gradient power (SGP); Thermolytic salts; Waste heat recovery; Civil and Structural Engineering; Building and Construction; Pollution; Energy (all); Mechanical Engineering; Industrial and Manufacturing Engineering; Electrical and Electronic EngineeringBuilding and ConstructionElectrodialysis021001 nanoscience & nanotechnologyPollution6. Clean waterEnergy (all)General EnergyReverse ElectroDialysis Heat Engine (REDHE)Electric power0210 nano-technology
researchProduct

CFD prediction of scalar transport in thin channels for reverse electrodialysis

2014

Reverse ElectroDialysis (RED) is a very promising technology allowing the electrochemical potential difference of a salinity gradient to be directly converted into electric energy. The fluid dynamics optimization of the thin channels used in RED is still an open problem. The present preliminary work focuses on the Computational Fluid Dynamics (CFD) simulation of the flow and concentration fields in these channels. In particular three different configurations were investigated: a channel unprovided with a spacer (empty channel) and two channels filled with spacers, one made of overlapped filaments the other of woven filaments. The transport of two passive scalars, representative of the ions …

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryChemistrySettore ING-IND/25 - Impianti ChimiciScalar (mathematics)Ocean EngineeringMechanicsCFD Salinity Gradient Power renewable energy Reverse Electro Dialysis water electric energy spacer woven polarization concentration concentration boundary layer.Computational fluid dynamicsElectrodialysisPollutionReversed electrodialysisFluid dynamicsOsmotic powerElectronic engineeringSettore ING-IND/06 - FluidodinamicaPeriodic boundary conditionsbusinessWater Science and TechnologyConcentration polarization
researchProduct

Reverse Electrodialysis: Applications to Different Case Studies

2018

Salinity gradient is a non-conventional renewable energy form which is widely available worldwide. Reverse Electrodialysis is a promising and innovative technology able to convert directly this chemical renewable energy into electricity. This paper presents a number of different scenarios where salinity gradients are naturally available or they result from industrial/urban activities. A sophisticated model accounting for all the main phenomena (including all the detrimental ones) occurring within a Reverse Electrodialysis unit has been purposely developed. The model is used to calculate how much electric energy can be harvested from the above-mentioned salinity gradients.

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryEnvironmental engineering02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnology01 natural sciencesRenewable energySalinityElectric energyReversed electrodialysisMembrane Open-loop RED Reverse Electrodialysis Salinity Gradient PowerEnvironmental scienceElectricity0210 nano-technologybusiness0105 earth and related environmental sciences
researchProduct