Search results for "semigroups"

showing 10 items of 19 documents

A reduction theorem for the generalised Rhodes' Type II Conjecture

2018

One of the milestones in the theory of semigroups and automata is the Krohn-Rhodes Theorem. It states that every finite semigroup S divides a wreath product of finite simple groups, each of them divisor of S, and finite aperiodic semigroups, i. e. semigroups with trivial maximal subgroups. The smallest number of groups in any Kohn-Rhodes decomposition is called the group complexity of the semigroup. Since there is no obvious way to compute the complexity of a finite semigroup in general, the decidability of this number is one of the most important open problems in finite semigroup theory and the search for the solution has led to the development of many tools and ideas that are useful in fi…

:MATEMÁTICAS [UNESCO]generalised kernelsextension closed varietiesvarieties of groupssemigroupsUNESCO::MATEMÁTICAS
researchProduct

The ideal duplication

2021

AbstractIn this paper we present and study the ideal duplication, a new construction within the class of the relative ideals of a numerical semigroup S, that, under specific assumptions, produces a relative ideal of the numerical duplication $$S\bowtie ^b E$$ S ⋈ b E . We prove that every relative ideal of the numerical duplication can be uniquely written as the ideal duplication of two relative ideals of S; this allows us to better understand how the basic operations of the class of the relative ideals of $$S\bowtie ^b E$$ S ⋈ b E work. In particular, we characterize the ideals E such that $$S\bowtie ^b E$$ S ⋈ b E is nearly Gorenstein.

Class (set theory)Pure mathematicsAlgebra and Number TheoryIdeal (set theory)Nearly Gorenstein semigroups010102 general mathematics0102 computer and information sciences01 natural sciencesNearly Gorenstein semigroups Numerical duplication Relative ideal Canonical idealSettore MAT/02 - Algebra010201 computation theory & mathematicsNumerical semigroupNumerical duplicationRelative idealCanonical ideal0101 mathematicsAlgebra over a fieldMathematics
researchProduct

Hybrid bases for varieties of semigroups

2003

We consider the lower part of the lattice of varieties of semigroups. We present finite bases of hybrid identities for the varieties of normal bands, commutative bands and abelian groups of finite exponent. The variety A n,0 of abelian groups provides an example of a variety which has no finite base of hyperidentities (cf. [12]) but has a finite base of hybrid identities.

Discrete mathematicsPure mathematicsAlgebra and Number TheoryLattice (order)ExponentSpecial classes of semigroupsElementary abelian groupAbelian groupCommutative propertyMathematicsArithmetic of abelian varietiesAlgebra Universalis
researchProduct

Incomparable Banach spaces and operator semigroups

2002

Using the notions of total incomparability and total coincomparability of Banach spaces, we define two families of operator semigroups. We show that these semigroups are minimal, in the sense that they admit a perturbative characterization. Moreover, they allow us to characterize the corresponding incomparability classes.

Discrete mathematicsPure mathematicsOperator (computer programming)Approximation propertyGeneral MathematicsBanach spaceSpecial classes of semigroupsBanach manifoldFinite-rank operatorCharacterization (mathematics)C0-semigroupMathematicsArchiv der Mathematik
researchProduct

Stability of solution for Rao-Nakra sandwich beam model with Kelvin-Voigt damping and time delay

2022

This paper deals with stability of solution for a one-dimensional model of Rao?Nakra sandwich beam with Kelvin?Voigt damping and time delay given by ??1?1?????? ? ??1?1?????? ? ??(??? + ?? + ??????) ? ?????????? ? ??????????( ? , ?? ? ??) = 0, ??3?3?????? ? ??3?3?????? + ??(??? + ?? + ??????) ? ?????????? = 0, ????????? + ?????????????? ? ????(??? + ?? + ??????)?? ? ?????????? = 0. A sandwich beam is an engineering model that consists of three layers: two stiff outer layers, bottom and top faces, and a more compliant inner layer called ?core layer?. Rao?Nakra system consists of three layers and the assumption is that there is no slip at the interface between contacts. The top and bottom lay…

Kelvin-Voigt dampingexponential stabilityviive (tekniikka)Applied MathematicsMechanical EngineeringComputational Mechanicstime delaysemigroups theoryvakaus (fysiikka)Rao-Nakra sandwich beam model
researchProduct

Representation of Autonomous Automata

2001

An autonomous automaton is a finite automaton with output in which the input alphabet has cardinality one when special reduced. We define the transition from automata to semigroups via a representation successful if given two incomparable automata (neither simulate the other), the semigroups representing the automata are distinct. We show that representation by the transition semigroup is not successful. We then consider a representation of automata by semigroups of partial transformations. We show that in general transition from automata to semigroups by this representation is not successful either. In fact, the only successful transition presented is the transiton to this semigroup of par…

Krohn–Rhodes theoryDiscrete mathematicsNested wordFinite-state machineMathematics::Operator AlgebrasComputer scienceSemigroupTimed automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonAutomatonNondeterministic finite automaton with ε-movesStochastic cellular automatonDeterministic finite automatonDFA minimizationDeterministic automatonContinuous spatial automatonSpecial classes of semigroupsQuantum finite automataAutomata theoryTwo-way deterministic finite automatonNondeterministic finite automatonComputer Science::Formal Languages and Automata Theory
researchProduct

Geometrical characterization of non-Markovianity

2013

We introduce a new tool for the quantitative characterisation of the departure form Markovianity of a given dynamical process. Our tool can be applied to a generic $N$-level system and extended straightforwardly to Gaussian continuous-variable systems. It is linked to the change of the volume of physical states that are dynamically accessible to a system and provides qualitative expectations in agreement with some of the analogous tools proposed so far. We illustrate its prediticve power by tackling a few canonical examples.

PhysicsQuantum PhysicsN-LEVEL SYSTEMSQuantum decoherenceGaussianProcess (computing)FOS: Physical sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaCharacterization (materials science)DYNAMICAL SEMIGROUPSsymbols.namesakeN-LEVEL SYSTEMS; DYNAMICAL SEMIGROUPSMeasurement theorysymbolsStatistical physicsQuantum Physics (quant-ph)
researchProduct

Formations of finite monoids and formal languages: Eilenberg’s variety theorem revisited

2014

International audience; We present an extension of Eilenberg's variety theorem, a well-known result connecting algebra to formal languages. We prove that there is a bijective correspondence between formations of finite monoids and certain classes of languages, the formations of languages. Our result permits to treat classes of finite monoids which are not necessarily closed under taking submonoids, contrary to the original theory. We also prove a similar result for ordered monoids.; Nous présentons une extension du théorème des variétés d'Eilenberg, un résultat célèbre reliant l'algèbre à la théorie des langages formels. Nous montrons qu'il existe une correspondance bijective entre les form…

Pure mathematicsApplied MathematicsGeneral MathematicsACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.3: Formal Languages[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]Abstract family of languagesFormationRegular languagesCone (formal languages)regular languagePumping lemma for regular languagesAlgebravarietyRegular languageÁlgebraMSC 68Q70 20D10 20F17 20M25Mathematics::Category TheoryFormal languageVariety (universal algebra)SemigroupsGroup formationsAutomata theoryMathematics
researchProduct

Formations of Monoids, Congruences, and Formal Languages

2015

The main goal in this paper is to use a dual equivalence in automata theory started in [25] and developed in [3] to prove a general version of the Eilenberg-type theorem presented in [4]. Our principal results confirm the existence of a bijective correspondence between three concepts; formations of monoids, formations of languages and formations of congruences. The result does not require finiteness on monoids, nor regularity on languages nor finite index conditions on congruences. We relate our work to other results in the field and we include applications to non-r-disjunctive languages, Reiterman s equational description of pseudovarieties and varieties of monoids.

Pure mathematicsGeneral Computer ScienceApplied MathematicsData ScienceCWI Technical Report reportFormationsLlenguatges de programacióAbstract family of languagesCongruence relationlcsh:QA75.5-76.95Formal languagesMathematics::Category TheoryFormal languageComputingMethodologies_DOCUMENTANDTEXTPROCESSINGBijectionAutomata theorylcsh:Electronic computers. Computer scienceÀlgebraEquivalence (formal languages)SemigroupsMATEMATICA APLICADAAlgorithmAutomata theoryMathematicsScientific Annals of Computer Science
researchProduct

A C0-Semigroup of Ulam Unstable Operators

2020

The Ulam stability of the composition of two Ulam stable operators has been investigated by several authors. Composition of operators is a key concept when speaking about C0-semigroups. Examples of C0-semigroups formed with Ulam stable operators are known. In this paper, we construct a C0-semigroup (Rt)t&ge

Pure mathematicsPhysics and Astronomy (miscellaneous)General MathematicsMathematicsofComputing_GENERAL02 engineering and technology01 natural sciencesStability (probability)Domain (mathematical analysis)Chebyshev expansion0103 physical sciencescomposition of operatorsData_FILES0202 electrical engineering electronic engineering information engineeringComputer Science (miscellaneous)Infinitesimal generatorC0-semigroupNonlinear Sciences::Pattern Formation and SolitonsMathematicsMathematics::Functional Analysis010308 nuclear & particles physicsSemigroupMathematics::Operator Algebraslcsh:MathematicsUlam stabilityComposition (combinatorics)lcsh:QA1-939Nonlinear Sciences::Chaotic Dynamics<i>C</i><sub>0</sub>-semigroupsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESChemistry (miscellaneous)Chebyshev expansion020201 artificial intelligence & image processingSymmetry
researchProduct