Search results for "semimetal"

showing 10 items of 36 documents

Simplified feedback control system for scanning tunneling microscopy

2021

A Scanning Tunneling Microscope (STM) is one of the most important scanning probe tools available to study and manipulate matter at the nanoscale. In a STM, a tip is scanned on top of a surface with a separation of a few \AA. Often, the tunneling current between tip and sample is maintained constant by modifying the distance between the tip apex and the surface through a feedback mechanism acting on a piezoelectric transducer. This produces very detailed images of the electronic properties of the surface. The feedback mechanism is nearly always made using a digital processing circuit separate from the user computer. Here we discuss another approach, using a computer and data acquisition thr…

010302 applied physicsSuperconductivityPhysics - Instrumentation and DetectorsMaterials sciencebusiness.industrySerial communicationFOS: Physical sciencesWeyl semimetalPort (circuit theory)Instrumentation and Detectors (physics.ins-det)01 natural sciencesPiezoelectricityNoise (electronics)law.inventionCondensed Matter - Other Condensed MatterData acquisitionlawCondensed Matter::Superconductivity0103 physical sciencesOptoelectronicsScanning tunneling microscope010306 general physicsbusinessInstrumentationOther Condensed Matter (cond-mat.other)Review of Scientific Instruments
researchProduct

Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV 3 Sb 5

2020

The anomalous Hall effect soars when Dirac quasiparticles meet frustrated magnetism.

02 engineering and technology01 natural sciencesCondensed Matter::Materials ScienceHall effectCondensed Matter::Superconductivity0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicsAstrophysics::Galaxy AstrophysicsResearch ArticlesPhysicsMultidisciplinaryCondensed matter physicsScatteringDirac (video compression format)PhysicsSciAdv r-articles021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSemimetalFerromagnetismMagnetQuasiparticleSpin Hall effectCondensed Matter::Strongly Correlated Electrons0210 nano-technologyResearch ArticleScience Advances
researchProduct

Mixed topological semimetals driven by orbital complexity in two-dimensional ferromagnets

2018

The concepts of Weyl fermions and topological semimetals emerging in three-dimensional momentum space are extensively explored owing to the vast variety of exotic properties that they give rise to. On the other hand, very little is known about semimetallic states emerging in two-dimensional magnetic materials, which present the foundation for both present and future information technology. Here, we demonstrate that including the magnetization direction into the topological analysis allows for a natural classification of topological semimetallic states that manifest in two-dimensional ferromagnets as a result of the interplay between spin-orbit and exchange interactions. We explore the emerg…

0301 basic medicineElectronic properties and materialsMagnetismScienceFOS: Physical sciencesGeneral Physics and AstronomyPosition and momentum space02 engineering and technologyTopologyArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMagnetizationMagnetic properties and materialsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Topological insulatorslcsh:SciencePhysicsCondensed Matter - Materials ScienceMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQMaterials Science (cond-mat.mtrl-sci)General ChemistryFermion021001 nanoscience & nanotechnologySemimetal030104 developmental biologyDomain wall (magnetism)FerromagnetismTopological insulatorFerromagnetismlcsh:QCondensed Matter::Strongly Correlated Electronsddc:5000210 nano-technologyNature Communications
researchProduct

Nonlinear chiral transport in Dirac semimetals

2018

We study the current of chiral charge density in a Dirac semimetal with two Dirac points in momentum space, subjected to an externally applied time dependent electric field and in the presence of a magnetic field. Based on the kinetic equation approach, we find contributions to the chiral charge current, that are proportional to the second power of the electric field and to the first and second powers of the magnetic field, describing the interplay of the chiral anomaly and the drift motion of electrons moving under the action of electric and magnetic fields.

Chiral anomalyPhysicsDirac semimetalsCondensed Matter - Mesoscale and Nanoscale Physicsta114chiral charge densityHigh Energy Physics::LatticeDirac (software)FOS: Physical sciencesCharge densityPosition and momentum space02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesAction (physics)Magnetic fieldQuantum electrodynamicsElectric fieldMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Conduction band polarization in some CMR materials

2000

First principles electronic structure calculations reveal certain important common features in the conduction band polarization of many of the newly examined colossal magnetoresistance (CMR) materials. Most CMR compounds seem to possess a localized, magnetic band slightly below the Fermi energy. This localized band transfers polarization to a relatively broad conduction band. The nature of the two bands in different systems can be quite distinct. In the perovskite-derived manganese oxides, the magnetic band is derived from $Mn t_{2g}$ states while the conduction band is derived from Mn e states. In the chalcospinel $Fe_{^0.^5}$ $Cu_{^0.^5}$ $Cr_{2}$$ S_{4}$ , the $Crt_{2g}$ states which are…

Colossal magnetoresistanceMaterials scienceCondensed matter physicsBand gapPyrochloreFermi energyElectronic structureengineering.materialPolarization (waves)SemimetalMetalvisual_artMaterials Chemistryvisual_art.visual_art_mediumengineeringInternational Journal of Inorganic Materials
researchProduct

Seebeck coefficients of half-metallic ferromagnets

2009

In this report the Co2 based Heusler compounds are discussed as potential materials for spin voltage generation. The compounds were synthesized by arcmelting and consequent annealing. Band structure calculations were performed and revealed the compounds to be half-metallic ferromagnets. Magnetometry was performed on the samples and the Curie temperatures and the magnetic moments were determined. The Seebeck coefficients were measured from low to ambient temperatures for all compounds. For selected compounds high temperature measurements up to 900 K were performed.

Condensed Matter - Materials ScienceMaterials scienceMagnetic momentCondensed matter physicsAnnealing (metallurgy)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral ChemistryCondensed Matter PhysicsSemimetalCondensed Matter::Materials ScienceMagnetizationFerromagnetismThermoelectric effectMaterials ChemistryCurie temperatureCondensed Matter::Strongly Correlated ElectronsElectronic band structureSolid State Communications
researchProduct

Effects of Nid-levels on the electronic band structure of NixCd1-xO semiconducting alloys

2017

NixCd1-xO has a ∼3 eV band edge offset and bandgap varying from 2.2 to 3.6 eV, which is potentially important for transparent electronic and photovoltaic applications. We present a systematic study of the electronic band structure of NixCd1-xO alloys across the composition range. Ion irradiation of alloy samples leads to a saturation of the electron concentration associated with pinning of the Fermi level (EF) at the Fermi stabilization energy, the common energy reference located at 4.9 eV below the vacuum level. The composition dependence of the pinned EF allows determination of the conduction band minimum (CBM) energy relative to the vacuum level. The unusually strong deviation of the CBM…

Condensed matter physicsChemistryBand gapFermi levelGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSemimetalsymbols.namesakeBand bending0103 physical sciencessymbolsDirect and indirect band gaps010306 general physics0210 nano-technologyElectronic band structurePseudogapQuasi Fermi levelJournal of Applied Physics
researchProduct

Electron–phonon effects on the direct band gap in semiconductors: LCAO calculations

2002

Abstract Using a perturbative treatment of the electron–phonon interaction, we have studied the effect of phonons on the direct band gap of conventional semiconductors. Our calculations are performed in the framework of the tight-binding linear combination of atomic orbitals (LCAO) approach. Within this scheme we have calculated the temperature and isotopic mass dependence of the lowest direct band gap of several semiconductors with diamond and zincblende structure. Our results reproduce the overall trend of available experimental data for the band gap as a function of temperature, as well as give correctly the mass dependence of the band gap on isotopic. A calculation of conduction band in…

Condensed matter physicsPhononbusiness.industryChemistryBand gapGeneral ChemistryCondensed Matter PhysicsSemimetalCondensed Matter::Materials ScienceSemiconductorTight bindingLinear combination of atomic orbitalsMaterials ChemistryDirect and indirect band gapsDebye–Waller factorbusinessSolid State Communications
researchProduct

Band Alignments in InxGa1–xP/GaAs Heterostructures Investigated by Pressure Experiments

2000

6 páginas, 3 figuras.

Condensed matter physicsbusiness.industryChemistryBand gapHeterojunctionCondensed Matter PhysicsSemimetalBand offsetElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceOptoelectronicsDirect and indirect band gapsbusinessQuasi Fermi level
researchProduct

Semiconducting half-Heusler and LiGaGe structure type compounds

2009

Compounds with LiAlSi (half-Heusler) and LiGaGe structure types have been investigated by means of band structure calculations. The LiAlSi structure type is known as the half-Heusler structure type, whereas LiGaGe is a closely related hexagonal variant. A remarkable feature of some XYZ half-Heusler compounds with 8 and 18 valence electrons is, that despite being composed of only metallic elements, they are semiconductors. More than 100 semiconducting compounds within these structure types are known. LiGaGe compounds have an additional degree of freedom, namely the degree of puckering of the layers. These compounds can become semiconducting at a certain degree of puckering. Half-metallic beh…

Condensed matter physicsbusiness.industryChemistryHexagonal crystal systemSurfaces and InterfacesStructure typeElectronic density of statesCondensed Matter PhysicsSemimetalSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMetalSemiconductorvisual_artMaterials Chemistryvisual_art.visual_art_mediumElectrical and Electronic EngineeringbusinessValence electronElectronic band structurephysica status solidi (a)
researchProduct