Search results for "sequence data"

showing 10 items of 1952 documents

Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua

2010

Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari (TM), a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression …

0106 biological sciencesDrug Resistancelcsh:MedicineGene ExpressionInsectaminopeptidase n01 natural sciencesAminopeptidasesHemolysin ProteinsEndotoxinmanduca-sextaBacillus thuringiensisInsect ProteinBiotechnology/Applied Microbiologylcsh:Scienceheliothis-virescensmedia_common0303 health sciencesLarvaMultidisciplinarybiologymediated insect resistanceGenetics and Genomics/Gene ExpressionEcology/Population Ecologybacterial-infectionNoctuidaeInsect ProteinsResearch Articlemedia_common.quotation_subjectAminopeptidaseMolecular Sequence DataBacillus thuringiensisBacterial ProteinSpodopteraSpodopterastem-cell proliferationMicrobiology03 medical and health sciencesMicrobiology/Applied MicrobiologyBacterial ProteinsExiguaBotanyBacillus thuringiensiAnimalscrystal proteinsBIOS Plant Development SystemsAmino Acid Sequencekinase pathways030304 developmental biologyposterior midgutHeliothis virescensBacillus thuringiensis ToxinsAnimaltrichoplusia-nilcsh:RfungiMidgutHemolysin Proteinbiology.organism_classificationEndotoxinsGastrointestinal Tract010602 entomologyPlant Biology/Agricultural Biotechnologylcsh:QSequence Alignment
researchProduct

Molecular markers linked to breeding system differences in segregating and natural populations of the cereal aphid Rhopalosiphum padi L.

1999

The aphid Rhopalosiphum padi shows coexistence of sexual and asexual populations, providing an opportunity to study the evolution of breeding system variation in the context of theories on the origin and maintenance of sex. However, assessments of the distribution of sexual and asexual lineages of this aphid are complicated by the difficulties in rapidly characterizing their breeding system. To facilitate this task and to gain insight into the genetic relatedness between sexual and asexual genotypes, molecular markers linked to breeding system differences were recently developed. In this study, we have successfully converted a random amplified polymorphic DNA (RAPD) marker associated with l…

0106 biological sciencesGenetic MarkersPopulationMolecular Sequence DataParthenogenesisRestriction MappingLocus (genetics)BiologyBreeding010603 evolutionary biology01 natural sciencesDNA MitochondrialAsexualityGene flow03 medical and health sciencesRhopalosiphum padiReproduction AsexualGeneticsAnimalsCloning MoleculareducationEcology Evolution Behavior and Systematics030304 developmental biology0303 health sciencesAphideducation.field_of_studyBase SequenceEcologyReproductionParthenogenesisSequence Analysis DNAbiology.organism_classificationRandom Amplified Polymorphic DNA TechniqueGenetics PopulationEvolutionary biologyGenetic markerAphidsEdible GrainMolecular ecology
researchProduct

The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation

2007

The smallest known eukaryotes, at ≈1-μm diameter, are Ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri . This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface character…

0106 biological sciencesGenome evolutionProtein familyGene Transfer Horizontal[SDV]Life Sciences [q-bio]Molecular Sequence DataBiologyEnvironment01 natural sciencesGenomeChromosomesOstreococcus tauriOstreococcus03 medical and health sciencesChlorophyta[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]SelenoproteinsGeneComputingMilieux_MISCELLANEOUS030304 developmental biologyGeneticsCell Nucleus0303 health sciencesMultidisciplinaryMetal metabolismGenomeVitaminsBiological Sciencesbiology.organism_classificationPlanktonAdaptation PhysiologicalBiological EvolutionEukaryotic CellsMetalsHorizontal gene transfer010606 plant biology & botany
researchProduct

Demosponge EST sequencing reveals a complex genetic toolkit of the simplest metazoans.

2010

Sponges (Porifera) are among the simplest living and the earliest branching metazoans. They hold a pivotal role for studying genome evolution of the entire metazoan branch, both as an outgroup to Eumetazoa and as the closest branching phylum to the common ancestor of all multicellular animals (Urmetazoa). In order to assess the transcription inventory of sponges, we sequenced expressed sequence tag libraries of two demosponge species, Suberites domuncula and Lubomirskia baicalensis, and systematically analyzed the assembled sponge transcripts against their homologs from complete proteomes of six well-characterized metazoans--Nematostella vectensis, Caenorhabditis elegans, Drosophila melanog…

0106 biological sciencesGenome evolutionanimal structuresMolecular Sequence Datacomparative genomicsBiologyLubomirskia baicalensis010603 evolutionary biology01 natural sciencesGenomeEvolution Molecular03 medical and health sciencesGeneticsAnimalsCiona intestinalisMolecular BiologyGeneEcology Evolution Behavior and SystematicsPhylogenyResearch Articles030304 developmental biologymetazoan evolution; comparative genomics; genome complexity; Suberites domuncula; Lubomirskia baicalensisComparative genomicsGeneticsExpressed Sequence Tags0303 health sciencesComparative Genomic HybridizationGenomegenome complexityBase SequenceSequence Homology Amino Acidmetazoan evolutionbiology.organism_classificationSuberites domunculaEumetazoaPoriferaSuberites domunculaGene Expression RegulationSuberitesSequence AlignmentSuberitesMolecular biology and evolution
researchProduct

Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobac…

2007

International audience; Pathogen attack represents a major problem for viticulture and for agriculture in general. At present, the use of phytochemicals is more and more restrictive, and therefore it is becoming essential to control disease by having a thorough knowledge of resistance mechanisms. The present work focused on the trans-regulatory proteins potentially involved in the control of the plant defence response, the WRKY proteins. A full-length cDNA, designated VvWRKY1, was isolated from a grape berry library (Vitis vinifera L. cv. Cabernet Sauvignon). It encodes a polypeptide of 151 amino acids whose structure is characteristic of group IIc WRKY proteins. VvWRKY1 gene expression in …

0106 biological sciencesGénomique et Biotechnologie des FruitsPhysiologyTransgenesalicylic acid[SDV]Life Sciences [q-bio]Amino Acid MotifsMolecular Sequence DataWRKY transcription factorPlant ScienceGenetically modified cropsBiology01 natural sciences03 medical and health scienceschemistry.chemical_compoundplant resistance to pathogensGene Expression Regulation PlantComplementary DNABotanyGene expressionTobacco[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyVitisCloning MolecularPathogen030304 developmental biologyPlant Proteins2. Zero hungerGeneticschemistry.chemical_classification0303 health sciencesBase SequenceFungifood and beveragesPlants Genetically ModifiedWRKY protein domainImmunity InnateAmino acid[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacychemistrySalicylic acid010606 plant biology & botanyTranscription Factors
researchProduct

Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci

2015

Background The whitefly Bemisia tabaci is an important agricultural pest with global distribution. This phloem-sap feeder harbors a primary symbiont, “Candidatus Portiera aleyrodidarum”, which compensates for the deficient nutritional composition of its food sources, and a variety of secondary symbionts. Interestingly, all of these secondary symbionts are found in co-localization with the primary symbiont within the same bacteriocytes, which should favor the evolution of strong interactions between symbionts. Results In this paper, we analyzed the genome sequences of the primary symbiont Portiera and of the secondary symbiont Hamiltonella in the B. tabaci Mediterranean (MED) species in orde…

0106 biological sciencesHamiltonellaCandidatus Portiera aleyrodidarum[SDV]Life Sciences [q-bio]Molecular Sequence DataWhiteflyPortiera010603 evolutionary biology01 natural sciencesGenomeHemiptera03 medical and health sciencesMetabolic complementationSymbiosisEnterobacteriaceaeBotanyGeneticsAnimalsAmino AcidsSymbiosisIn Situ Hybridization Fluorescence030304 developmental biology2. Zero hungerGenetics0303 health sciencesEndosymbiontGenomebiologyfungifood and beveragesHigh-Throughput Nucleotide SequencingDNASequence Analysis DNAVitaminsbiochemical phenomena metabolism and nutritionbiology.organism_classificationEnterobacteriaceaeHemipteraWhiteflyComplementationHalomonadaceaeGlobal distribution[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]Genome BacterialMetabolic Networks and PathwaysBiotechnologyResearch ArticleBMC Genomics
researchProduct

Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants

2011

 voir Addenda, notes additionnelles complétant l'article : "Dahan, J., Hammoudi, V., Wendehenne, D., Bourque, S. (2011). Type 2 histone deacetylases play a major role in the control of elicitor-induced cell death in tobacco. Plant signaling & behavior, 6 (11), 1865-1867. DOI : 10.4161/psb.6.11.17848".; International audience; Plant resistance to pathogen attack is often associated with a localized programmed cell death called hypersensitive response (HR). How this cell death is controlled remains largely unknown. Upon treatment with cryptogein, an elicitor of tobacco defence and cell death, we identified NtHD2a and NtHD2b, two redundant isoforms of type-2 nuclear histone deacetylases (HDACs…

0106 biological sciencesHypersensitive responseProgrammed cell deathPhysiologyplant defenceNicotiana tabacum[SDV]Life Sciences [q-bio]Molecular Sequence DataHistone Deacetylase 2Plant Science01 natural sciencesMass SpectrometrycryptogeinFungal Proteins03 medical and health sciences[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyTobaccoAmino Acid SequencePhosphorylationNuclear proteinPhylogeny030304 developmental biology0303 health sciencesbiologyNicotiana tabacumAlgal ProteinsNuclear Proteinsfood and beveragesAcetylationbiology.organism_classificationElicitorCell biologyHistonecell deathhypersensitive response (HR)Acetylationhistone deacetylasebiology.proteinHistone deacetylasePeptidesSequence AlignmentChromatography Liquid010606 plant biology & botanynuclear signalling
researchProduct

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

2010

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of…

0106 biological sciencesLineage (evolution)Molecular Sequence DataPhaeophyta01 natural sciencesGenomeEvolution Molecular03 medical and health sciencesAlgae[SDV.BDD] Life Sciences [q-bio]/Development BiologyBotanyBIOLOGIE CELLULAIREAnimals14. Life underwater[SDV.BDD]Life Sciences [q-bio]/Development Biologyflore marinePhylogenyOrganismComputingMilieux_MISCELLANEOUSphéophycées030304 developmental biology0303 health sciencesGenomeMultidisciplinarybiologyEctocarpus siliculosusAlgal ProteinsEukaryotaPigments BiologicalEctocarpus15. Life on landbiology.organism_classificationBiological EvolutionBrown algaeMulticellular organismEvolutionary biologyalgues brunesBiologieSignal Transduction010606 plant biology & botany
researchProduct

Activation of a nuclear-localized SIPK in tobacco cells challenged by cryptogein, an elicitor of plant defence reactions.

2009

When a plant cell is challenged by a well-defined stimulus, complex signal transduction pathways are activated to promote the modulation of specific sets of genes and eventually to develop adaptive responses. In this context, protein phosphorylation plays a fundamental role through the activation of multiple protein kinase families. Although the involvement of protein kinases at the plasma membrane and cytosolic levels are now well-documented, their nuclear counterparts are still poorly investigated. In the field of plant defence reactions, no known study has yet reported the activation of a nuclear protein kinase and/or its nuclear activity in plant cells, although some protein kinases, e.…

0106 biological sciencesMAPK/ERK pathwayMolecular Sequence DataActive Transport Cell NucleusBiology01 natural sciencesBiochemistryMAP2K703 medical and health sciencesCytosolTobaccoASK1Protein phosphorylation[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyAmino Acid SequenceNuclear proteinProtein kinase AMolecular BiologyConserved Sequence030304 developmental biologyPlant ProteinsCell Nucleus0303 health sciencesKinasePlant ExtractsAlgal ProteinsLife SciencesCell BiologyCell biologyEnzyme ActivationBiochemistrySignal transductionMitogen-Activated Protein KinasesSequence Alignment010606 plant biology & botanySignal TransductionThe Biochemical journal
researchProduct

The Chlamydomonas genome reveals the evolution of key animal and plant functions

2007

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the a…

0106 biological sciencesMESH: Sequence Analysis DNAMESH: Algal ProteinsChloroplastsProteomeMESH: PlantsChlamydomonas reinhardtii01 natural sciencesGenomeMESH: Membrane Transport ProteinsDNA AlgalMESH: DNA AlgalMESH: AnimalsGoniumPhotosynthesisMESH: PhylogenyMESH: PhotosynthesisPhylogenyGenetics0303 health sciencesGenomeMultidisciplinarybiologyMESH: Genomicsfood and beveragesGenomicsPlantsBiological EvolutionMESH: Genes[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]MESH: ProteomeFlagellaMultigene FamilyMESH: Computational BiologyMESH: Chlamydomonas reinhardtiiNuclear geneMolecular Sequence Data[SDV.BC]Life Sciences [q-bio]/Cellular BiologyFlagellumMESH: FlagellaArticle03 medical and health sciencesIntraflagellar transportMESH: EvolutionAnimalsMESH: Genome[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Gene[SDV.BC] Life Sciences [q-bio]/Cellular Biology030304 developmental biologyMESH: Molecular Sequence DataMESH: ChloroplastsAlgal ProteinsChlamydomonasComputational BiologyMembrane Transport ProteinsSequence Analysis DNAbiology.organism_classificationGenesMESH: Multigene FamilyChlamydomonas reinhardtii010606 plant biology & botany
researchProduct