Search results for "spines"

showing 10 items of 28 documents

The morphology, ontogeny, and inferred behaviour of the deep-sea echinoid Calymne relicta (Holasteroida).

2009

The deep-sea holasteroid Calymne relicta was first described from a few fragments discovered by the HMS ‘Challenger’ in the Bermuda abyssal plain more than a century ago. In addition to re-examining the type material, we describe herein new specimens from unpublished material collected between 3720 and 4860 m during three scientific expeditions that took place on both sides of the North Atlantic between 1966 and 1991. The new material includes juvenile and adult specimens in sufficiently good preservational state to allow a full redescription, including all types of appendages, some of which have never been described. These new observations confirm the atypical characteristics of C. relicta…

0106 biological sciencesSystematics[ SDV.BA.ZI ] Life Sciences [q-bio]/Animal biology/Invertebrate ZoologyOntogenyCalymnidaeZoologyMorphology (biology)spines[SDV.BID]Life Sciences [q-bio]/Biodiversityappendages010603 evolutionary biology01 natural sciencesDeep seasystematics.PaleontologyType (biology)Animalia14. Life underwatersystematicsEcology Evolution Behavior and SystematicsTaxonomyHolasteroidaAppendage[ SDV.BID ] Life Sciences [q-bio]/Biodiversitygeographyfunctional morphology[ SDE.BE ] Environmental Sciences/Biodiversity and Ecologygeography.geographical_feature_categorybiologyCalymne relicta010604 marine biology & hydrobiologyAbyssal plainEchinoideaBiodiversitybiology.organism_classification[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate ZoologyAnimal Science and Zoology[SDE.BE]Environmental Sciences/Biodiversity and EcologyEchinodermata
researchProduct

Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mP…

2016

Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal n…

0301 basic medicineAgonistMaleDendritic spineArticle SubjectGlycoside Hydrolasesmedicine.drug_classDendritic SpinesPrefrontal CortexNeural Cell Adhesion Molecule L1NeurotransmissionInhibitory postsynaptic potentialbehavioral disciplines and activitiesSynaptic Transmissionlcsh:RC321-571Rats Sprague-Dawley03 medical and health sciences0302 clinical medicineDopamineDopamine receptor D2PhenethylaminesmedicineAnimalslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryChemistryReceptors Dopamine D2Pyramidal CellsGlutamate receptorRats030104 developmental biologyNeurologynervous systemDopamine AgonistsSialic AcidsNeural cell adhesion moleculeNeurology (clinical)Neuroscience030217 neurology & neurosurgerymedicine.drugResearch ArticleNeural plasticity
researchProduct

Chronic benzodiazepine treatment decreases spine density in cortical pyramidal neurons.

2015

The adult brain retains a substantial capacity for synaptic reorganization, which includes a wide range of modifications from molecular to structural plasticity. Previous reports have demonstrated that the structural remodeling of excitatory neurons seems to occur in parallel to changes in GABAergic neurotransmission. The function of neuronal inhibitory networks can be modified through GABAA receptors, which have a binding site for benzodiazepines (BZ). Although BZs are among the most prescribed drugs, is not known whether they modify the structure and connectivity of pyramidal neurons. In the present study we wish to elucidate the impact of a chronic treatment of 21 days with diazepam (2mg…

0301 basic medicineCingulate cortexMaleDendritic spineDendritic SpinesPrefrontal CortexMice TransgenicBiologyInhibitory postsynaptic potential03 medical and health sciences0302 clinical medicinePostsynaptic potentialAnimalsGABA-A Receptor AgonistsDiazepamBehavior AnimalDose-Response Relationship DrugGABAA receptorGeneral NeurosciencePyramidal Cellsfood and beveragesLong-term potentiation030104 developmental biologynervous systemExcitatory postsynaptic potentialGABAergicNeuroscience030217 neurology & neurosurgeryNeuroscience letters
researchProduct

The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons

2017

N-Methyl-d-Aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play a key role in the structural plasticity of excitatory neurons, but to date little is known about their influence on the remodeling of interneurons. Among hippocampal interneurons, the somatostatin expressing cells in the CA1 stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change their density in response to different stimuli. In order to understand the role of NMDAR activation on the structural dynamics of the spines of somatostatin expressing interneurons in …

0301 basic medicineDendritic spineDendritic SpinesHippocampusHippocampal formationBiologyHippocampusReceptors N-Methyl-D-Aspartate03 medical and health sciences0302 clinical medicineInterneuronsAnimalsReceptorCells CulturedMice KnockoutPyramidal Cellsmusculoskeletal neural and ocular physiologyGeneral NeuroscienceLong-term potentiationSpine030104 developmental biologySomatostatinnervous systemExcitatory postsynaptic potentialNMDA receptorSomatostatinNeuroscience030217 neurology & neurosurgeryNeuroscience Letters
researchProduct

Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.

2015

Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 level…

0301 basic medicineDendritic spineVesicular Inhibitory Amino Acid Transport Proteinsdrug effects [Synapses]Tropomyosin receptor kinase BHippocampal formationgenetics [Carrier Proteins]pharmacology [Brain-Derived Neurotrophic Factor]Hippocampusmetabolism [Vesicular Inhibitory Amino Acid Transport Proteins]Mtap2 protein ratMice0302 clinical medicineNeurotrophic factorsdrug effects [Synaptic Vesicles]genetics [Nerve Tissue Proteins]Cells Culturedultrastructure [Neurons]NeuronsChemistryLong-term potentiationSynaptic Potentialsphysiology [Neurons]physiology [Dendritic Spines]Cell biologyultrastructure [Dendritic Spines]metabolism [Receptor trkB]Synaptic VesiclesFilopodiaultrastructure [Synaptosomes]Disks Large Homolog 4 ProteinMicrotubule-Associated ProteinsCognitive NeuroscienceDendritic Spinesmetabolism [Disks Large Homolog 4 Protein]Nerve Tissue Proteinsgenetics [Receptor trkB]03 medical and health sciencesCellular and Molecular NeuroscienceOrgan Culture Techniquesphysiology [Synaptic Vesicles]metabolism [Vesicular Glutamate Transport Protein 1]TrkB protein ratdrug effects [Synaptic Potentials]Synaptic vesicle recyclingAnimalsHumansReceptor trkBddc:610metabolism [Synaptosomes]metabolism [Nerve Tissue Proteins]Viaat protein ratBrain-Derived Neurotrophic Factormetabolism [Microtubule-Associated Proteins]Rats030104 developmental biologygenetics [Synaptic Potentials]nervous systemcytology [Hippocampus]Synaptic plasticityultrastructure [Synapses]SynapsesVesicular Glutamate Transport Protein 1CPNE6 protein ratphysiology [Synapses]Carrier Proteins030217 neurology & neurosurgerymetabolism [Carrier Proteins]SynaptosomesCerebral cortex (New York, N.Y. : 1991)
researchProduct

NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice.

2018

See Contreras and Hippenmeyer (doi:10.1093/brain/awy218) for a scientific commentary on this article. Autism spectrum disorders (ASDs) are complex conditions with diverse aetiologies. Szczurkowska et al. demonstrate that two ASD-related molecules – FGFR2 and Negr1 – physically interact to act on the same downstream pathway, and regulate cortical development and ASD-relevant behaviours in mice. Identifying common mechanisms in ASDs may reveal targets for pharmacological intervention.

0301 basic medicineMAPK/ERK pathwaygenetic structuresAutism Spectrum DisorderFGFR2 signalingFibroblast growth factorReceptor tyrosine kinaseMiceautism; development; cell adhesion; in utero electroporation; FGFR2 signaling0302 clinical medicineCell MovementCerebral CortexMice KnockoutbiologyBehavior AnimalKinaseCell adhesion moleculeCell biologyProtein TransportSignal Transductionmusculoskeletal diseasesMAP Kinase Signaling SystemCell Adhesion Molecules NeuronalDendritic SpinesNeurogenesisautismDown-Regulationbehavioral disciplines and activities03 medical and health sciencesmental disordersmedicineAnimalsHumansAutistic DisorderReceptor Fibroblast Growth Factor Type 2developmentProtein kinase BFibroblast growth factor receptor 2Cell Membranecell adhesionOriginal Articlesin utero electroporationmedicine.diseaseMice Inbred C57BLDisease Models Animal030104 developmental biologyHEK293 Cellsbiology.proteinAutismNeurology (clinical)030217 neurology & neurosurgeryBrain : a journal of neurology
researchProduct

Reduced interneuronal dendritic arborization in CA1 but not in CA3 region of mice subjected to chronic mild stress

2016

Abstract Introduction Chronic stress induces dendritic atrophy and decreases spine density in excitatory hippocampal neurons, although there is also ample evidence indicating that the GABAergic system is altered in the hippocampus after this aversive experience. Chronic stress causes dendritic remodeling both in excitatory neurons and interneurons in the medial prefrontal cortex and the amygdala. Methods In order to know whether it also has an impact on the structure and neurotransmission of hippocampal interneurons, we have analyzed the dendritic arborization, spine density, and the expression of markers of inhibitory synapses and plasticity in the hippocampus of mice submitted to 21 days …

0301 basic medicineMaleDendritic spineDendritic SpinesHippocampusPSA‐NCAMCell CountNeural Cell Adhesion Molecule L1Hippocampal formationBiologyNeurotransmissionAmygdalaHippocampus03 medical and health sciencesBehavioral NeuroscienceMice0302 clinical medicineInterneuronsNeuroplasticitymedicineAnimalsChronic stressCA1 Region HippocampalOriginal ResearchInhibitionNeuronal PlasticityGlutamate Decarboxylasemusculoskeletal neural and ocular physiologyfungiCA3 Region Hippocampalstructural plasticity030104 developmental biologymedicine.anatomical_structurenervous systemExcitatory postsynaptic potentialGAD67Sialic AcidsNeuroscience030217 neurology & neurosurgeryStress PsychologicalBrain and Behavior
researchProduct

Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin.

2020

Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, i…

0301 basic medicineMaleDendritic spineGeneral Physics and AstronomyHippocampal formationVARIANTSADULT NEUROGENESIS0302 clinical medicineCognitionhemic and lymphatic diseasesReceptors ErythropoietinHypoxialcsh:ScienceNEURONSMultidisciplinaryNeuronal PlasticityPyramidal CellsNeurogenesisQBrainCell DifferentiationHEMATOPOIETIC PROGENITOR CELLSFemalemedicine.symptomProto-Oncogene Proteins c-fosmedicine.drugEXPRESSIONScienceDendritic SpinesNeurogenesisModels NeurologicalBiologyMotor ActivityGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesParacrine signallingPhysical Conditioning AnimalNeuroplasticitymedicineAnimalsHumansErythropoietinMEMORYCognitive neuroscienceGeneral ChemistryHypoxia (medical)RECOMBINANT-HUMAN-ERYTHROPOIETINCellular neuroscienceErythropoietin receptorMice Inbred C57BLMICE030104 developmental biologyErythropoietinPhysical EnduranceIDENTITYlcsh:QTranscriptomeNeuroscience030217 neurology & neurosurgeryGene Deletion
researchProduct

The TrkB agonist 7,8-dihydroxyflavone changes the structural dynamics of neocortical pyramidal neurons and improves object recognition in mice

2018

This is a pre-print of an article published in Brain Structure and Function. The final authenticated version is available online at: https://doi.org/10.1007/s00429-018-1637-x. BDNF and its receptor TrkB have important roles in neurodevelopment, neural plasticity, learning, and memory. Alterations in TrkB expression have been described in different CNS disorders. Therefore, drugs interacting with TrkB, specially agonists, are promising therapeutic tools. Among them, the recently described 7,8-dihydroxyflavone (DHF), an orally bioactive compound, has been successfully tested in animal models of these diseases. Recent studies have shown the influence of this drug on the structure of pyramidal …

0301 basic medicineMaleDendritic spineTrkB receptorNeocortexTropomyosin receptor kinase B78-Dihydroxyflavoneaxonal dynamicsMice0302 clinical medicineReceptorMembrane GlycoproteinsGeneral NeurosciencePyramidal CellsProtein-Tyrosine Kinases2-Photonbarrel cortexFemaleMicrogliaAnatomyAgonistHistologymedicine.drug_classDendritic SpinesMice TransgenicBiologyspine dynamicsrecognition memory03 medical and health sciencesBacterial ProteinsNeuroplasticitymedicinepyramidal neuronAnimalsMaze LearningParenchymal TissueRecognition memoryAnalysis of VarianceRecognition PsychologyBarrel cortexFlavonesAxonsLuminescent Proteins030104 developmental biologynervous systemAstrocytesen passant boutonsThy-1 AntigensNeuroscience030217 neurology & neurosurgery
researchProduct

Modulating Neuronal Competition Dynamics in the Dentate Gyrus to Rejuvenate Aging Memory Circuits.

2015

The neural circuit mechanisms underlying the integration and functions of adult-born dentate granule cell (DGCs) are poorly understood. Adult-born DGCs are thought to compete with mature DGCs for inputs to integrate. Transient genetic overexpression of a negative regulator of dendritic spines, Kruppel-like factor 9 (Klf9), in mature DGCs enhanced integration of adult-born DGCs and increased NSC activation. Reversal of Klf9 overexpression in mature DGCs restored spines and activity and reset neuronal competition dynamics and NSC activation, leaving the DG modified by a functionally integrated, expanded cohort of age-matched adult-born DGCs. Spine elimination by inducible deletion of Rac1 in …

0301 basic medicinerac1 GTP-Binding ProteinAgingDendritic spineCell SurvivalDendritic SpinesNeurogenesisKruppel-Like Transcription FactorsRAC1BiologyNegative regulator03 medical and health sciencesMice0302 clinical medicineDownregulation and upregulationNeural Stem CellsMemorymedicineAnimalsCell ProliferationNeuronsMemory circuitsGeneral NeuroscienceDentate gyrusNeuropeptidesGranule cellUp-RegulationKLF9Adult Stem Cells030104 developmental biologymedicine.anatomical_structureDentate GyrusMutationNeuroscience030217 neurology & neurosurgeryNeuron
researchProduct