Search results for "sputtering"
showing 10 items of 136 documents
A study of solar thermal absorber stack based on CrAlSiNx/CrAlSiNxOy structure by ion beams
2019
Renewable energies are foreseen as a major energy resource for next generations. Among several energy sources and technologies available, Concentrated Solar Power (CSP) technology has a great potential, but it needs to be optimised, in particular to reduce the costs, with an increase of the operating temperature and long term stability. This goal can be achieved by tailoring the composition and multilayer structure of films. In this work we present and discuss the results obtained from solar absorber coatings based on nitride/oxynitride structures. A four-layer film structure, W/CrAlSiNx(HA)/CrAlSiNxOy(LA)/SiAlOx, was deposited on stainless steel substrates using magnetron sputtering deposi…
Characterization of thin superconducting YBaCuO-films by Raman-spectroscopy
1988
We have investigated thin sputtered films of the high Tc material YBa2Cu3O7 by means of Raman spectroscopy at different stages of the preparation process. We find that the films are amorphous after sputtering. The Raman spectra indicate that random polycrystalline layers, as well as crystalline layers with preferred orientation, are obtained by an additional thermal treatment.
Thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe20Ni80 spin-valve structures
2017
Abstract We investigated the thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe 20 Ni 80 spin-valve structures. Thin film systems were obtained with the help of sputtering method. For the first type of systems two particular thicknesses ( d ML = 3 and 20 nm) and different disposition of magnetic layers (ML) were used. For the second type different thickness of Ag ( d NML ) spacer layer was used. The research of the crystal structure was performed with the transmission electron microscope. The results demonstrate that every investigated as-deposited sample does not include solid solutions, intermetallic compounds or impurities. It has been found that among the spin-valve…
Shape memory NiTi thin films deposited at low temperature
1999
Abstract NiTi shape memory alloy (SMA) thin films have the potential to become high performance actuators for micro-electromechanical systems. Low temperature crystallized NiTi films would ensure a good compatibility with microelectronic processes and polymers. To avoid the drawbacks induced by annealing, we have tried to obtain low temperature crystallized RF sputtered NiTi films by optimising deposition parameters. We have found that NiTi films containing an excess of Ti (∼52%) were crystallized when deposited on Si(100) substrates heated up to only 473 K. NiTi/Si(n) Schottky diodes I–V characteristics showed a temperature dependence indicating structural transition in the NiTi electrode.…
Experimental evidence on photo-assisted O− ion production from Al2O3 cathode in cesium sputter negative ion source
2020
The production of negative ions in cesium sputter ion sources is generally considered to be a pure surface process. It has been recently proposed that ion pair production could explain the higher-than-expected beam currents extracted from these ion sources, therefore opening the door for laser-assisted enhancement of the negative ion yield. We have tested this hypothesis by measuring the effect of various pulsed diode lasers on the O − beam current produced from Al 2O 3 cathode of a cesium sputter ion source. It is expected that the ion pair production of O − requires populating the 5d electronic states of neutral cesium, thus implying that the process should be provoked only with specific …
Structure and chemical bonds in reactively sputtered black Ti–C–N–O thin films
2011
The evolution of the nanoscale structure and the chemical bonds formed in Ti–C–N–O films grown by reactive sputtering were studied as a function of the composition of the reactive atmosphere by increasing the partial pressure of an O2+N2 gas mixture from 0 up to 0.4 Pa, while that of acetylene (carbon source) was constant. The amorphisation of the films observed by transmission electron microscopy was confirmed by micro- Raman spectroscopy, but it was not the only effect associated to the increase of the O2+N2 partial pressure. The chemical environment of titanium and carbon, analysed by X-ray photoemission spectroscopy, also changes due to the higher affinity of Ti towards oxygen and nitro…
Study of the structural changes induced by air oxidation in Ti–Si–N hard coatings.
2008
International audience; 3-μm thick Ti–Si–N coatings were deposited on polished X38CrMoV5 substrates by sputtering a composite Ti–Si target in Ar–N2 reactive mixture. Oxidation tests were performed in air at 700 °C during 2 h. Whatever the silicon content in the range 0–4 at.%, no silicon containing compound was detected by XRD before air oxidation and only the TiN phase was evidenced. The mean grain size estimated from the full width at half maximum of the TiN (111) diffraction peak was close to 10 nm. As commonly reported for Ti–Si–N films, the hardness showed a maximum at 51 GPa versus the Si content. After oxidation of the TiN film, XRD and micro-Raman analyses revealed the occurrence of…
Ferroelectricity and structure of BaTiO grown on YBa Cu O thin films
2000
We have investigated the crystal structure and the ferroelectric properties of BaTiO3 thin films with YBa2Cu3O \(_{7 - \delta }\) as the bottom and Au as the top electrode. Epitaxial heterostructures of YBa2Cu3O \(_{7 - \delta }\) and BaTiO3 were prepared by dc and rf sputtering, respectively. The crystal structure of the films was characterised by X-ray diffraction. The ferroelectric behaviour of the BaTiO3 films was confirmed by hysteresis loop measurements using a Sawyer Tower circuit. We obtain a coercive field of 30 kV/cm and a remanent polarisation of 1.25 μC/cm2. At sub-switching fields the capacitance of the films obeys a relation analogous to the Rayleigh law. This behaviour indica…
Hole localization in thermoelectric half-Heusler (Zr0.5Hf0.5)Co(Sb1−xSn ) thin films
2019
Abstract The (Ti, Zr, Hf)Co(Sb 1 − x Snx) material class has recently come into focus as an attractive p-type high-temperature thermoelectric material. This study experimentally demonstrates that homogeneous, highly textured (Zr0.5Hf0.5)Co(Sb 1 − x Snx) thin films can be grown on single crystalline MgO. By varying the sputter power, samples with both positive and negative Seebeck coefficient can be grown. The underlying reason for the sign change is the segregation of Sn nano-inclusions, which lower the effective doping of the half-Heusler matrix. Similarly the Hall constant also switches sign at low temperatures, which is modeled assuming semi-metal behavior and low temperature hole locali…
Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu2O thin films
2020
We report the photocatalytic properties of ZnO and Cu2O thin films deposited on glass substrates at room temperature by DC sputtering and pulsed laser deposition. The photoactivity of the films was investigated through the degradation of rhodamine B (RhB) and methyl orange (MO) under solar light. In order to select the most suitable film of ZnO for the of RhB and MO degradation, the relationship between the characteristics (e.g. energy levels and defects concentration) of ZnO films and their effectiveness in the photocatalytic yield of RhB and MO been studied, where several films were deposited by using different oxygen partial pressures (PO2: 0.05–1.3 mbar), while Cu2O films were grown und…