Search results for "stone"
showing 10 items of 1137 documents
Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis
2016
Background Obesity has tremendous impact on the health systems. Its epigenetic bases are unclear. MacroH2A1 is a variant of histone H2A, present in two alternatively exon-spliced isoforms macroH2A1.1 and macroH2A1.2, regulating cell plasticity and proliferation, during pluripotency and tumorigenesis. Their role in adipose tissue plasticity is unknown. Results Here, we show evidence that macroH2A1.1 protein levels in the visceral adipose tissue of obese humans positively correlate with BMI, while macroH2A1.2 is nearly absent. We thus introduced a constitutive GFP-tagged transgene for macroH2A1.2 in mice, and we characterized their metabolic health upon being fed a standard chow diet or a hig…
Transcriptional and Epigenetic Control of Astrogliogenesis
2017
Abstract Astrocytes exert pivotal functions in the brain ranging from homeostasis to plasticity and their malfunctioning may contribute to neurodegenerative diseases. With increased recognition of their importance, more efforts are being dedicated to decoding the molecular mechanisms that control the generation of astrocytes from neural stem cells, a process referred to as astrogliogenesis. In this chapter, we highlight the discoveries that have shed light on the role of transcription factors, DNA methylation, histone modifications, and microRNAs in driving the transcriptional programs that underlie astrocyte generation. We further discuss the current understanding of gene regulatory pathwa…
Genomic Imprinting and the Regulation of Postnatal Neurogenesis
2017
Most genes required for mammalian development are expressed from both maternally and paternally inherited chromosomal homologues. However, there are a small number of genes known as “imprinted genes” that only express a single allele from one parent, which is repressed on the gene from the other parent. Imprinted genes are dependent on epigenetic mechanisms such as DNA methylation and post-translational modifications of the DNA-associated histone proteins to establish and maintain their parental identity. In the brain, multiple transcripts have been identified which show parental origin-specific expression biases. However, the mechanistic relationship with canonical imprinting is unknown. R…
A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development.
2017
Summary Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apop…
Basic Concepts in Molecular Biology Related to Genetics and Epigenetics.
2017
The observation that "one size does not fit all" for the prevention and treatment of cardiovascular disease, among other diseases, has driven the concept of precision medicine. The goal of precision medicine is to provide the best-targeted interventions tailored to an individual's genome. The human genome is composed of billions of sequence arrangements containing a code that controls how genes are expressed. This code depends on other nonstatic regulators that surround the DNA and constitute the epigenome. Moreover, environmental factors also play an important role in this complex regulation. This review provides a general perspective on the basic concepts of molecular biology related to g…
Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark?
2016
The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mu…
Histones, Their Variants and Post-translational Modifications in Zebrafish Development.
2020
Complex multi-cellular organisms are shaped starting from a single-celled zygote, owing to elaborate developmental programs. These programs involve several layers of regulation to orchestrate the establishment of progressively diverging cell type-specific gene expression patterns. In this scenario, epigenetic modifications of chromatin are central in influencing spatiotemporal patterns of gene transcription. In fact, it is generally recognized that epigenetic changes of chromatin states impact on the accessibility of genomic DNA to regulatory proteins. Several lines of evidence highlighted that zebrafish is an excellent vertebrate model for research purposes in the field of developmental ep…
Molecular docking-based virtual drug screening revealing an oxofluorenyl benzamide and a bromonaphthalene sulfonamido hydroxybenzoic acid as HDAC6 in…
2020
HDAC6 is a crucial epigenetic modifier that plays a vital role in tumor progression and carcinogenesis due to its multiple biological functions. It is a unique member of class-II HDAC enzymes. It possesses two catalytic domains, which function independently of the overall enzyme activity. Up to date, there are only a few selective HDAC6 inhibitors with anti-cancer activity. In this study, 175,204 ligands obtained from the ZINC15 and OTAVAchemical databases were used for virtual drug screening against HDAC6. Molecular docking studies were performed for 100 selected compounds. Furthermore, the top 10 compounds obtained from docking were tested for their efficacy to inhibit the function of HDA…
Wiedemann-Steiner syndrome as a major cause of syndromic intellectual disability: A study of 33 French cases.
2018
International audience; Wiedemann-Steiner syndrome (WSS) is a rare syndromic condition in which intellectual disability (ID) is associated with hypertrichosis cubiti, short stature, and characteristic facies. Following the identification of the causative gene (KMT2A) in 2012, only 31 cases of WSS have been described precisely in the literature. We report on 33 French individuals with a KMT2A mutation confirmed by targeted gene sequencing, high-throughput sequencing or exome sequencing. Patients' molecular and clinical features were recorded and compared with the literature data. On the molecular level, we found 29 novel mutations. We observed autosomal dominant transmission of WSS in 3 fami…
Epigenetic IVD Tests for Personalized Precision Medicine in Cancer
2019
Epigenetic alterations play a key role in the initiation and progression of cancer. Therefore, it is possible to use epigenetic marks as biomarkers for predictive and precision medicine in cancer. Precision medicine is poised to impact clinical practice, patients, and healthcare systems. The objective of this review is to provide an overview of the epigenetic testing landscape in cancer by examining commercially available epigenetic-based in vitro diagnostic tests for colon, breast, cervical, glioblastoma, lung cancers, and for cancers of unknown origin. We compile current commercial epigenetic tests based on epigenetic biomarkers (i.e., DNA methylation, miRNAs, and histones) that can actua…