Search results for "stopping"

showing 10 items of 55 documents

Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans

2021

Motor inhibitory control implemented as response inhibition is an essential cognitive function required to dynamically adapt to rapidly changing environments. Despite over a decade of research on the neural mechanisms of response inhibition, it remains unclear, how exactly response inhibition is initiated and implemented. Using a multimodal MEG/fMRI approach in 59 subjects, our results reliably reveal that response inhibition is initiated by the right inferior frontal gyrus (rIFG) as a form of attention-independent top-down control that involves the modulation of beta-band activity. Furthermore, stopping performance was predicted by beta-band power, and beta-band connectivity was directed f…

0301 basic medicineAdultMaleRight inferior frontal gyrusComputer scienceQH301-705.5ScienceBiophysicsPrefrontal Cortexstop signal taskGeneral Biochemistry Genetics and Molecular Biologypre-supplementary motor areastopping03 medical and health sciencesBeta band0302 clinical medicineCognitionInhibitory controlReaction TimeHumansresponse inhibitionBiology (General)Response inhibitionMotor areaGeneral Immunology and MicrobiologyOscillationGeneral NeuroscienceQMotor CortexRMagnetoencephalographyCognitionGeneral MedicineMagnetic Resonance ImagingattentionInhibition Psychological030104 developmental biologyMedicineFemaleBeta RhythmNeuroscience030217 neurology & neurosurgeryPsychomotor PerformanceResearch ArticleNeuroscienceHumaneLife
researchProduct

Convex rear view mirrors compromise distance and time-to-contact judgements

2007

Convex rear view mirrors increasingly replace planar mirrors in automobiles. While increasing the field of view, convex mirrors are also taken to increase distance estimates and thereby reduce safety margins. However, this study failed to replicate systematic distance estimation errors in a real world setting. Whereas distance estimates were accurate on average, convex mirrors lead to significantly more variance in distance and spacing estimations. A second experiment explored the effect of mirrors on time-to-contact estimations, which had not been previously researched. Potential effects of display size were separated from effects caused by distortion in convex mirrors. Time-to-contact est…

AdultMaleAutomobile DrivingEngineeringTime FactorsAdolescentRear-view mirrorPoison controlCurved mirrorPhysical Therapy Sports Therapy and RehabilitationHuman Factors and ErgonomicsField of viewOpticsDistortionHumansComputer SimulationSimulationPerceptual Distortionbusiness.industryEstimation theoryDistance PerceptionProtective DevicesMiddle AgedStopping sight distanceMotor VehiclesFemaleErgonomicsVisual FieldsVisual anglebusinessErgonomics
researchProduct

The best choice problem with an unknown number of objects

1993

The secretary problem with a known prior distribution of the number of candidates is considered. Ifp(i)=p(N=i),i ∈ [α, β] ∩ ℕ, whereα=inf{i ∈ℕ:p(i) > 0} andβ=sup{i ∈ℕ:p(i)≳0}, is the prior distribution of the numberN of candidates it will be shown that, if the optimal stopping rule is of the simple form, then the optimal stopping indexj=minΓ satisfies asymptotically (asβ → ∞) the equationj=exp $${{\left[ {\left( {\sum\limits_{i = max(\alpha ,j)}^\beta {p(i) \log (i)/i} } \right)} \right]} \mathord{\left/ {\vphantom {{\left[ {\left( {\sum\limits_{i = max(\alpha ,j)}^\beta {p(i) \log (i)/i} } \right)} \right]} {\left. {\left( {\sum\limits_{i = max(\alpha ,j)}^\beta {p(i)/i} } \right) - 1} \ri…

CombinatoricsStopping setGeneral MathematicsStopping ruleCalculusOptimal stopping ruleManagement Science and Operations ResearchChoice problemSoftwareMathematicsZOR Zeitschrift f�r Operations Research Methods and Models of Operations Research
researchProduct

Design, construction and cooling system performance of a prototype cryogenic stopping cell for the Super-FRS at FAIR

2015

A cryogenic stopping cell for stopping energetic radioactive ions and extracting them as a low energy beam was developed. This first ever cryogenically operated stopping cell serves as prototype device for the Low-Energy Branch of the Super-FRS at FAIR. The cell has a stopping volume that is 1 m long and 25 cm in diameter. Ions are guided by a DC field along the length of the stopping cell and by a combined RF and DC fields provided by an RE carpet at the exit-hole side. The ultra-high purity of the stopping gas required for optimum ion survival is reached by cryogenic operation. The design considerations and construction of the cryogenic stopping cell, as well as some performance character…

Dc fieldNuclear and High Energy PhysicsSPACE-CHARGEPhysics::Instrumentation and DetectorsNuclear engineering7. Clean energy01 natural sciencesIonNuclear physicsSuper-FRSENERGYCryogenic stopping cell0103 physical sciencesWater coolingddc:530FACILITYradioactive ion beams010306 general physicsInstrumentationRADIOACTIVE IONSFinal versionPhysicsCATCHERSPECTROSCOPYta114010308 nuclear & particles physicsCYCLOTRON GAS STOPPERCryocoolerSpace chargeVolume (thermodynamics)13. Climate actionIon catcherRadioactive on beamsFLIGHT MASS-SPECTROMETRYPROJECTILE FRAGMENTSBeam (structure)ION GUIDE
researchProduct

Stochastic Decision Support Models and Optimal Stopping Rules in a New Product Lifetime Testing

2010

Determining when to stop a statistical test is an important management decision. Several stopping criteria have been proposed, including criteria based on statistical similarity, the probability that the system has a desired reliability, and the expected cost of remaining faults. This paper presents a new stopping rule in fixed-sample testing based on the statistical estimation of total costs involved in the decision to continue beyond an early failure as well as a stopping rule in sequential-sample testing to determine when testing should be stopped. The paper considers the problem that can be stated as follows. A new product is submitted for lifetime testing. The product will be accepted …

Decision support systemMathematical optimizationbusiness.industryComputer scienceNew product developmentOptimal stoppingbusiness
researchProduct

Peak Power Demand and Energy Consumption Reduction Strategies for Trains under Moving Block Signalling System

2013

Published version of an article in the journal: Mathematical Problems in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2013/940936 Open Access In the moving block signalling (MBS) system where the tracking target point of the following train is moving forward with its leading train, overload of the substations occurs when a dense queue of trains starts (or restarts) in very close distance interval. This is the peak power demand problem. Several methods have been attempted in the literature to deal with this problem through changing train's operation strategies. However, most existing approaches reduce the service quality. In this paper, two novel approaches - …

EngineeringArticle Subjectconsumption reductionsGeneral Mathematicssignalling systemsHeadwaydecision parametersenergy efficientQueueenergy efficiencySimulationbusiness.industryautomatic train controllcsh:Mathematicsnonlinear programming methodsGeneral EngineeringAutomatic train controldistance intervalsEnergy consumptionlcsh:QA1-939VDP::Mathematics and natural science: 400::Mathematics: 410Power (physics)lcsh:TA1-2040Trainstopping distanceoperation strategytarget trackingenergy utilizationlcsh:Engineering (General). Civil engineering (General)businessEnergy (signal processing)Efficient energy useMathematical Problems in Engineering
researchProduct

Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

2016

The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area $\sim$18 m$^2$, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trap…

ExoticsParticle physicsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsProtonMagnetic monopoleFOS: Physical sciencesddc:500.2Particle and resonance production114 Physical sciences7. Clean energy01 natural sciencesMathematical SciencesHigh Energy Physics - Experimentlaw.inventionCOLLIDERHigh Energy Physics - Experiment (hep-ex)MAGNETIC MONOPOLESSTOPPING-POWERlawHadron-Hadron scattering (experiments)0103 physical sciencesFIELD010306 general physicsColliderHIGHLY IONIZING PARTICLESphysics.ins-detPhysicsOPALLarge Hadron ColliderSTABLE MASSIVE PARTICLEShep-ex010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsPair productionMoEDAL experimentPhysical SciencesProduction (computer science)CHARGEParticle Physics - ExperimentEnergy (signal processing)Exotic
researchProduct

First search for dyons with the full MoEDAL trapping detector in 13 TeV pp collisions

2021

The MoEDAL trapping detector, consists of approximately 800 kg of aluminium volumes. It was exposed during Run-2 of the LHC program to 6.46 fb^-1 of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminium volumes comprising the detector through a SQUID magnetometer. The presence of a trapped dyon would be signalled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to 5 Dirac charges, and an electric charge up to 200 times the fundamental electric …

General PhysicsMoEDAL electric and magnetic charge dyonPhysics MultidisciplinaryMagnetic monopoleFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences7. Clean energyElectric charge114 Physical sciencesMoEDAL Collaboration09 Engineeringlaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)MAGNETIC MONOPOLESSTOPPING-POWERlaw0103 physical sciencesPARTICLES010306 general physics01 Mathematical SciencesParticle Physics - PhenomenologyPhysicsRange (particle radiation)Large Hadron ColliderScience & Technology02 Physical Scienceshep-exPhysicsDetectorPersistent currenthep-phSQUIDHigh Energy Physics - PhenomenologyDyonPhysical SciencesHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production

2019

MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC…

General PhysicsPhotonPhysics beyond the Standard ModelPhysics MultidisciplinaryMagnetic monopoleGeneral Physics and AstronomyFOS: Physical sciencesddc:500.27. Clean energy01 natural sciences114 Physical sciencesMoEDAL Collaboration09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)STOPPING-POWER0103 physical sciences010306 general physicsPROTON COLLISIONS01 Mathematical SciencesParticle Physics - PhenomenologyPhysicsLarge Hadron ColliderLuminosity (scattering theory)Science & Technology02 Physical SciencesMagnetic monopoleInteraction pointhep-exDirac (video compression format)PhysicsCharge (physics)hep-phHigh Energy Physics - PhenomenologyPhysical SciencesLHCParticle Physics - Experiment
researchProduct

A setup to develop novel Chemical Isobaric SEparation (CISE)

2020

Abstract Gas catchers are widely used to thermalize nuclear reaction products and subsequently extract them for precision measurements. However, impurities in the inert stopping gas can chemically react with the ions and thus influence the extraction efficiency. So far, chemical reactions in the gas-catcher have not been investigated in detail. Therefore, we are currently building a new setup to develop Chemical Isobaric SEparation (CISE) with the aim to understand the chemistry inside the gas-catcher and to explore its potential as a new technique for separation of isobars. In this paper, we give a short description of the setup together with the ion transportation studies performed via io…

InertNuclear and High Energy PhysicsGas catcherMass spectrometryNuclear engineeringExtraction (chemistry)Mass spectrometryChemical reactionIonGas-phase chemistryChemical isobaric separationImpuritySTOPPING CELLIsobarIsobaric processInstrumentationIon guideNuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms
researchProduct