Search results for "substrate"

showing 10 items of 1018 documents

Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine

2017

Biogenic amines degradation by bacterial laccases is little known, so we have cloned and heterologously expressed, in E. coli, a new laccase from Pediococcus acidilactici CECT 5930 (Lpa5930), a lactic acid bacterium commonly found in foods able to degrade tyramine. The recombinant enzyme has been characterized by physical and biochemical assays. Here we report the optimization of expression and purification procedures of this laccase. DNA encoding sequence of laccase from P. acidilactici was amplified by PCR and cloned into the expression plasmid pET28a for induction by isopropyl-β-D-thiogalactoipyranoside. Protein expression was performed in E. coli BL21(DE3) harboring pGro7 plasmid expres…

0106 biological sciences0301 basic medicineArabinoseMolecular biologylcsh:MedicineLaccasesBiochemistryBiotecnologia01 natural sciencesSubstrate Specificitylaw.inventionDatabase and Informatics Methodschemistry.chemical_compoundlawRecombinant Protein PurificationCloning MolecularAmineslcsh:Sciencechemistry.chemical_classificationMultidisciplinaryABTSbiologyOrganic CompoundsTemperatureHydrogen-Ion ConcentrationTyramineRecombinant ProteinsEnzymesChemistryRecombination-Based AssayBiochemistryPhysical SciencesRecombinant DNAElectrophoresis Polyacrylamide GelOxidation-ReductionSequence AnalysisResearch ArticleProtein PurificationBioinformaticsTyramineLibrary ScreeningDNA constructionResearch and Analysis Methods03 medical and health sciencesBacterial ProteinsSequence Motif Analysis010608 biotechnologyAmino Acid SequenceBenzothiazolesPediococcus acidilacticiLaccaseMolecular Biology Assays and Analysis TechniquesBase SequenceMolecular massLaccaseOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesProteinsPediococcus acidilacticiSequence Analysis DNAbiology.organism_classificationMolecular biology techniques030104 developmental biologyEnzymechemistryPlasmid ConstructionEnzymologySpectrophotometry Ultravioletlcsh:QSulfonic AcidsEnzimsProteïnesPurification TechniquesPLOS ONE
researchProduct

Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives

2016

The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold hig…

0106 biological sciences0301 basic medicineGlycosylationGlycosylationStereochemistryRutinAmino Acid Motifs01 natural sciencesApplied Microbiology and BiotechnologySubstrate Specificity03 medical and health sciencesRutinchemistry.chemical_compoundAmylosucraseGlucosyltransferasesBacterial Proteins010608 biotechnologyDeinococcusBinding siteBinding SitesbiologyGeneral Medicinebiology.organism_classificationAcceptorMolecular Docking SimulationKinetics030104 developmental biologyAglyconechemistryGlucosyltransferasesbiology.proteinDeinococcusBiotechnologyJournal of Microbiology and Biotechnology
researchProduct

Fungal spore diversity reflects substrate-specific deposition challenges

2018

AbstractSexual spores are important for the dispersal and population dynamics of fungi. They show remarkable morphological diversity, but the underlying forces driving spore evolution are poorly known. We investigated whether trophic status and substrate associations are associated with morphology in 787 macrofungal genera. We show that both spore size and ornamentation are associated with trophic specialization, so that large and ornamented spores are more probable in ectomycorrhizal than in saprotrophic genera. This suggests that spore ornamentation facilitates attachment to arthropod vectors, which ectomycorrhizal species may need to reach lower soil layers. Elongated spore shapes are mo…

0106 biological sciences0301 basic medicinePopulationPopulation Dynamicslcsh:MedicineMorphology (biology)Biology010603 evolutionary biology01 natural sciencesArticle03 medical and health sciencesmorfologiaAscomycotaMycorrhizaelcsh:ScienceeducationSoil MicrobiologyTrophic levelitiöteducation.field_of_studyMultidisciplinaryEcologyBasidiomycotalcsh:Rfungisubstrate-specific deposition challengesSpores FungalSubstrate (marine biology)Spore030104 developmental biologyTaxonBiological dispersalfungal spore diversitylcsh:QsienetSoil microbiologyleviäminen
researchProduct

Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrh…

2016

International audience; A Gram-negative bacterium able to grow using chlorogenic acid (5-caffeoylquinic acid) as sole carbon source has been isolated from the roots of tomato plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. An intracellular esterase exhibiting very high affinity (K-m = 2 mu M) for chlorogenic acid has been extracted and purified by FPLC from the chlorogenate-grown cultures of this bacterium. The molecular mass of the purified esterase determined by SDS-PAGE was 61 kDa and its isoelectric point determined by chromatofocusing was 7.75. The esterase hydrolysed chlorogenic acid analogues (caffeoylshikimate, and the 4- and 3-caffeoylquinic acid i…

0106 biological sciences0301 basic medicineRhizophagus irregularisCoumaric AcidsPhysiologyRoot-associated bacteria[SDV]Life Sciences [q-bio]Arbuscular mycorrhizal fungiPlant ScienceBiologyCoumaric acidRoot exudates01 natural sciencesEsterasePlant RootsProtocatechuic acidSubstrate SpecificityFerulic acid03 medical and health scienceschemistry.chemical_compoundHydrolysisChlorogenic acidBacterial ProteinsSolanum lycopersicumMycorrhizaeGeneticsMethyl caffeate[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBacteriaEthanolMethanolChlorogenic acidbiology.organism_classification6. Clean waterChlorogenase030104 developmental biologychemistryBiochemistry[SDE]Environmental SciencesCarboxylic Ester Hydrolases010606 plant biology & botany
researchProduct

Glycolipid Biosurfactant Production from Waste Cooking Oils by Yeast: Review of Substrates, Producers and Products

2021

Biosurfactants are a microbially synthesized alternative to synthetic surfactants, one of the most important bulk chemicals. Some yeast species are proven to be exceptional biosurfactant producers, while others are emerging producers. A set of factors affects the type, amount, and properties of the biosurfactant produced, as well as the environmental impact and costs of biosurfactant’s production. Exploring waste cooking oil as a substrate for biosurfactants’ production serves as an effective cost-cutting strategy, yet it has some limitations. This review explores the existing knowledge on utilizing waste cooking oil as a feedstock to produce glycolipid biosurfactants by yeast. The review f…

0106 biological sciences0301 basic medicineTP500-660Cooking oilChemistryCommodity chemicalsFermentation industries. Beverages. Alcoholcircular economyPlant Sciencemicrobial surfactantsSubstrate (biology)Raw materialPulp and paper industry01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)Yeastwaste valorization03 medical and health sciences030104 developmental biologyGlycolipidused cooking oil010608 biotechnologynonconventional yeastsFood ScienceFermentation
researchProduct

Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs

2018

Dead wood is initially a nitrogen (N) poor substrate, where the N content increases with decay, partly due to biological N2 fixation, but the drivers of the N accumulation are poorly known. We quantified the rate of N2 fixation in decaying Norway spruce logs of different decay stages and studied the potential regulators of the N2-fixation activity. The average rate for acetylene reduction in the decaying wood was 7.5 nmol ethylene g−1d−1, which corresponds to 52.9 μg N kg−1d−1. The number of nifH copies (g−1 dry matter) was higher at the later decay stages, but no correlation between the copy number and the in vitro N2 fixation rate was found. All recovered nifH sequences were assigned to t…

0106 biological sciences0301 basic medicineta1172Soil Sciencechemistry.chemical_element010603 evolutionary biology01 natural sciencesMicrobiologyMethane03 medical and health scienceschemistry.chemical_compoundlahoaminenBotanyDry matterlahopuutritsobitdead woodnifHbiologyPicea abiesChemistryta1183coarse woody debrisPicea abiesbiology.organism_classificationNitrogenSubstrate (marine biology)kuusi030104 developmental biologytypensidontaasymbiotic nitrogen fixationNitrogen fixationDiazotrophCoarse woody debrisSoil Biology and Biochemistry
researchProduct

Monitoring of transglutaminase crosslinking reaction by 1H NMR spectroscopy on model substrates

2015

International audience; A new method based on 1H NMR spectroscopy was developed for monitoring transglutaminase crosslinking reaction with model molecules (CBZ-Gln-Gly and N-α-acetyl-lysine). The transglutaminase reaction led to the appearance of new resonances on NMR spectrum as well as significant decrease in others. The new observed resonances, originated from newly formed ɛ-(γ-glutamyl)lysine isopeptide bonds, evidence the enzymatic reaction and allow to quantify the ɛ-(γ-glutamyl)lysine fragment. Moreover, the decrease in resonance intensity, originated from lysine, permit to determine the crosslinking degree. These results obtained by 1H NMR spectroscopy can be used as an alternative …

0106 biological sciences1h nmr spectroscopyTissue transglutaminaseLysineCrosslinking degreePhotochemistrycomplex mixtures01 natural sciences03 medical and health sciencesModel substratesɛ-(γ-glutamyl)-lysineColloid and Surface ChemistryLiquid chromatography–mass spectrometry010608 biotechnologyOrganic chemistryMolecule[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyAlternative methods0303 health sciencesbiologyChemistryResonanceNuclear magnetic resonance spectroscopyMicrobial transglutaminasebiology.proteinColloids and Surfaces A: Physicochemical and Engineering Aspects
researchProduct

Forty questions of importance to the policy and practice of native oyster reef restoration in Europe

2020

© 2020 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons Ltd Oyster reefs are among the most threatened marine habitats globally. In Europe, oyster reefs have been extirpated from most locations within their historical range. Active restoration of the native oyster (Ostrea edulis) in Europe has grown substantially in recent years. In sharing experiences between oyster restoration projects in Europe at the Native Oyster Restoration Alliance conference, NORA2, in Edinburgh in May 2019, it became apparent that a number of similar barriers are experienced. This study identified the top 40 questions, which, if answered, would have the greatest inf…

0106 biological sciencesAquatic Ecology and Water Quality ManagementOysterBiosecurityalien speciesinsights01 natural sciencesVotingpollutionpreferencesmedia_commoneducation.field_of_studysubtidalEcologybiologyconservationalien species ; estuary ; fishing ; invertebrates ; pollution ; restoration ; subtidalGeographyIfremerOyster reef restorationrestorationmedia_common.quotation_subjectPopulationpanoramasubstrateAquatic Science010603 evolutionary biologyflat oysterestuarysettlementlarval developmentbiology.animal14. Life underwaterOstrea eduliseducationEnvironmental planningfishingNature and Landscape ConservationecosystemBusiness Manager projecten Midden-NoordACL010604 marine biology & hydrobiologyostrea-edulis l.Marine habitatsmarineAquatische Ecologie en WaterkwaliteitsbeheerVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497invertebratesbiology.organism_classificationThreatened speciesWIAS[SDE.BE]Environmental Sciences/Biodiversity and EcologyBusiness Manager projects Mid-North
researchProduct

Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor

2015

Commercial lipases, from porcine pancreas (PPL),Candida rugosa(CRL), andThermomyces lanuginosus(Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, C…

0106 biological sciencesArticle SubjectLinoleic acidlcsh:TX341-64101 natural sciencesHydrolysischemistry.chemical_compound010608 biotechnology[SDV.IDA]Life Sciences [q-bio]/Food engineeringFlavorchemistry.chemical_classificationChromatographylcsh:TP368-456010405 organic chemistryChemistrySubstrate (chemistry)0104 chemical sciencesCandida rugosalcsh:Food processing and manufactureEnzymeBiochemistryBiocatalysisLiberationlcsh:Nutrition. Foods and food supply[SDV.AEN]Life Sciences [q-bio]/Food and NutritionResearch ArticleFood ScienceInternational Journal of Food Science
researchProduct

A Knowledge-Based System as a Sustainable Software Application for the Supervision and Intelligent Control of an Alcoholic Fermentation Process

2020

One goal of specialists in food processing is to increase production efficiency in accordance with sustainability by optimising the consumption of raw food materials, water, and energy. One way to achieve this purpose is to develop new methods for process monitoring and control. In the winemaking industry, there is a lack of procedures regarding the common work based on knowledge acquisition and intelligent control. In the present article, we developed and tested a knowledge-based system for the alcoholic fermentation process of white winemaking while considering the main phases: the latent phase, exponential growth phase, and decay phase. The automatic control of the white wine&rsquo

0106 biological sciencesAutomatic controlComputer scienceGeography Planning and DevelopmentTJ807-830BiomassManagement Monitoring Policy and LawEthanol fermentationTD194-19501 natural sciencesRenewable energy sourcesKnowledge-based systems0404 agricultural biotechnology010608 biotechnologyBioreactorGE1-350knowledge-based systemProcess engineeringWinemakingEnvironmental effects of industries and plantsRenewable Energy Sustainability and the Environmentbusiness.industrysustainable intelligent controlProcess (computing)food and beverages04 agricultural and veterinary sciences040401 food scienceKnowledge acquisitionSubstrate concentrationwinemakingEnvironmental sciencesalcoholic fermentation processFood processingFermentationbusinessIntelligent controlSustainability
researchProduct