Search results for "synchrotron"
showing 10 items of 307 documents
The shape of the cutoff in the synchrotron emission of SN 1006 observed with XMM-Newton
2013
Synchrotron X-ray emission from the rims of young supernova remnants allows us to study the high-energy tail of the electrons accelerated at the shock front. The analysis of X-ray spectra can provide information on the physical mechanisms that limit the energy achieved by the electrons in the acceleration process. We aim at verifying whether the maximum electron energy in SN 1006 is limited by synchrotron losses and at obtaining information on the shape of the cutoff in the X-ray synchrotron emission. We analyzed the deep observations of the XMM-Newton SN 1006 Large Program. We performed spatially resolved spectral analysis of a set of small regions in the nonthermal limbs and studied the X…
The northwestern ejecta knot in SN 1006
2012
Aims: We want to probe the physics of fast collision-less shocks in supernova remnants. In particular, we are interested in the non-equilibration of temperatures and particle acceleration. Specifically, we aim to measure the oxygen temperature with regards to the electron temperature. In addition, we search for synchrotron emission in the northwestern thermal rim. Methods: This study is part of a dedicated deep observational project of SN 1006 using XMM-Newton, which provides us with currently the best resolution spectra of the bright northwestern oxygen knot. We aim to use the reflection grating spectrometer to measure the thermal broadening of the O vii line triplet by convolving the emis…
3-D imaging and quantification of graupel porosity by synchrotron-based micro-tomography
2011
The air bubble structure is an important parameter to determine the radiation properties of graupel and hailstones. For 3-D imaging of this structure at micron resolution, a cryo-stage was developed. This stage was used at the tomography beamline of the Swiss Light Source (SLS) synchrotron facility. The cryo-stage setup provides for the first time 3-D-data on the individual pore morphology of ice particles down to infrared wavelength resolution. In the present study, both sub-mm size natural and artificial ice particles rimed in a wind tunnel were investigated. In the natural rimed ice particles, Y-shaped air-filled closed pores were found. When kept for half an hour at −8 °C, this morpholo…
Non-thermal radiation from a pulsar wind interacting with an inhomogeneous stellar wind
2017
Binaries hosting a massive star and a non-accreting pulsar are powerful non-thermal emitters due to the interaction of the pulsar and the stellar wind. The winds of massive stars are thought to be inhomogeneous, which could have an impact on the non-thermal emission. We study numerically the impact of the presence of inhomogeneities or clumps in the stellar wind on the high-energy non-thermal radiation of high-mass binaries hosting a non-accreting pulsar. We compute the trajectories and physical properties of the streamlines in the shocked pulsar wind without clumps, with a small clump, and with a large one. This information is used to compute the synchrotron and inverse Compton emission fr…
High-pressure x-ray absorption study of GaTe including polarization
2000
The evolution of the local structure in GaTe under pressure is studied by x-ray absorption spectroscopy experiments at the Ga K-edge (10.368 keV) on oriented single crystals. Taking advantage of the linearly polarized character of synchrotron radiation, the pressure evolution of both the Ga-Te and the in-plane Ga-Ga bond lengths could be determined, in spite of the small amplitude of the latter. Our measurements show that both distances are much less compressible than what could be inferred from the bulk compressibility, which evidences a strong variation of Ga-Ga-Te and Te-Ga-Te angles under pressure. The Te-Te intralayer distance perpendicular to the layers is observed to increase with in…
Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell.
2015
7 pages; International audience; The growth and nucleation of biominerals are directed and affected by associated biological molecules. In this paper, we investigate the influence of occluded biomolecules on biogenic calcite from the coccolithophorid Pleurochrysis carterae and from chalk, a rock composed predominantly of fossil coccoliths. We compare the results with data on chalk from the extensively studied mussel Pinna nobilis that served as a control. Using high resolution synchrotron powder X-ray diffraction combined with in situ heating, the influence of organic compounds on the structure of the inorganic phase was probed. Two heating cycles allow us to differentiate the effects of th…
Geochemical evidence for arsenic cycling in living microbialites of a High Altitude Andean Lake (Laguna Diamante, Argentina)
2020
Arsenic is best known as an environmental toxin, but this element could also serve as a metabolic energy source to certain microorganisms. Moreover, As cycling may have driven microbial life on early Earth prior to oxygenation of the atmosphere. Still, little is known about the arsenic cycling processes occurring in the presence of microorganisms and the possible traces that could be preserved in the rock record. To advance our understanding of this we studied the geochemical proxies of microbial As metabolism in living microbialites from Laguna Diamante, a likely Precambrian ecosystem analogue (Catamarca, Argentina). In this study, we show that the coexistence of As(III) and As(V) strongly…
Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: from tissue morphology to indi…
2009
Current light microscopic methods such as serial sectioning, confocal microscopy or multiphoton microscopy are severely limited in their ability to analyse rather opaque biological structures in three dimensions, while electron optical methods offer either a good three-dimensional topographic visualization (scanning electron microscopy) or high-resolution imaging of very thin samples (transmission electron microscopy). However, sample preparation commonly results in a significant alteration and the destruction of the three-dimensional integrity of the specimen. Depending on the selected photon energy, the interaction between X-rays and biological matter provides semi-transparency of the spe…
Tin-DNA complexes investigated by nuclear inelastic scattering of synchrotron radiation
2005
Nuclear inelastic scattering (NIS) of synchrotron radiation has been used to investigate the dynamics of tin ions chelated by DNA. Theoretical NIS spectra have been simulated with the help of density functional theory (DFT) calculations using 12 models for different binding sites of the tin ion in (CH3)Sn(DNAPhosphate)2. The simulated spectra are compared with the measured spectrum of the tin-DNA complex.
3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography
2013
We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical and morphological localization by determining a complete infrared spectrum for every voxel (millions of spectra determined per sample).