Search results for "ta114"

showing 10 items of 1144 documents

Effect of innervation zones in estimating biceps brachii force-EMG relationship during isometric contraction

2012

Measuring muscle forces in vivo is invasive and consequently indirect methods e.g., electromyography (EMG) are used in estimating muscular force production. The aim of the present paper was to examine what kind of effect the disruption of the physiological signal caused by the innervation zone has in predicting the force/torque output from surface EMG. Twelve men (age 26 (SD ±3)years; height 179 (±6)cm; body mass 73 (±6)kg) volunteered as subjects. They were asked to perform maximal voluntary isometric contraction (MVC) in elbow flexion, and submaximal contractions at 10%, 20%, 30%, 40%, 50% and 75% of the recorded MVC. EMG was measured from biceps brachii muscle with an electrode grid of 5…

AdultMaleMean squared errorintervation zonePhysical Exertionta221BiophysicsNeuroscience (miscellaneous)Isometric exerciseElectromyographyBicepsElectrode GridSensitivity and SpecificityRoot mean squareIsometric ContractionElbow JointmedicineMuscular forceHumansMuscle StrengthMuscle Skeletalta315ta218MathematicsOrthodonticsvalidationta214medicine.diagnostic_testta114ElectromyographyReproducibility of ResultsmodelingAnatomybody regionsNeurology (clinical)Stress Mechanicalhigh-density EMGneuromuscularLeave one out methodAlgorithmsJOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY
researchProduct

Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking.

2013

This study was conducted to analyze the unimpaired control of the trunk during walking. Studying the unimpaired control of the trunk reveals characteristics of good control. These characteristics can be pursued in the rehabilitation of impaired control. Impaired control of the trunk during walking is associated with aging and many movement disorders. This is a concern as it is considered to increase fall risk. Muscles that contribute to the trunk control in normal walking may also contribute to it under perturbation circumstances, attempting to prevent an impending fall. Knowledge of such muscles can be used to rehabilitate impaired control of the trunk. Here, angular accelerations of the t…

AdultMalemedicine.medical_specialtyMovement disordersAdolescentAccelerationBiomedical EngineeringBiophysicsPoison controlWalkingYoung AdultPhysical medicine and rehabilitationImaging Three-DimensionalmedicineHumansOrthopedics and Sports MedicineComputer Simulationta315ChildMuscle SkeletalGaitta114biologybusiness.industryRehabilitationHealthy subjectsFall riskbiology.organism_classificationTrunkSagittal planeHealthy VolunteersMediusmedicine.anatomical_structureLower ExtremityCoronal planePhysical therapyFemalemedicine.symptombusinesshuman activitiesSoftwareGravitationJournal of biomechanics
researchProduct

From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials

2010

Phase-change optical memories are based on the astonishingly rapid nanosecond-scale crystallization of nanosized amorphous 'marks' in a polycrystalline layer. Models of crystallization exist for the commercially used phase-change alloy Ge(2)Sb(2)Te(5) (GST), but not for the equally important class of Sb-Te-based alloys. We have combined X-ray diffraction, extended X-ray absorption fine structure and hard X-ray photoelectron spectroscopy experiments with density functional simulations to determine the crystalline and amorphous structures of Ag(3.5)In(3.8)Sb(75.0)Te(17.7) (AIST) and how they differ from GST. The structure of amorphous (a-) AIST shows a range of atomic ring sizes, whereas a-GS…

AgInSbTeHardware_MEMORYSTRUCTURESMaterials scienceta114business.industryMechanical EngineeringRecrystallization (metallurgy)General ChemistryNanosecondCondensed Matter PhysicsLocal structurePhase changeSemiconductorMechanics of MaterialsOptoelectronicsGeneral Materials ScienceAtomic physicsbusinessUltrashort pulseOptical discNature Materials
researchProduct

Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection

2019

In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots are functionalized with capture DNA sequences complementary to the analyte (target) DNA. Upon incubation with the target sequence, it will bind on the respectively complementary functionalized particle spot. This binding changes the local refractive index, which is detected spectroscopically as the resulting changes of the localized surface plasmon resonance (LSPR) peak wavelength. In order to increase the signal, a small gold nanoparticle label is introduced. The binding ca…

AnalyteMaterials scienceta221Molecular bindingMetal NanoparticlesNanoparticleBioengineering02 engineering and technologybiosensorit01 natural sciencesSensor arrayLimit of DetectionNanosensorplasmonic arrayNanotechnologyLSPR sensingSurface plasmon resonanceDNA FungalInstrumentationPlasmonCandidaDNA detectionFluid Flow and Transfer ProcessesPlasmonic nanoparticlesBase Sequenceta114business.industryProcess Chemistry and Technology010401 analytical chemistryta1182Fourier-transform-imaging spectroscopynanobiotekniikkaDNASurface Plasmon Resonance021001 nanoscience & nanotechnologyplasmonic nanoparticles0104 chemical sciencesAspergillusOptoelectronicsnanohiukkasetGoldDNA Probes0210 nano-technologybusinessACS Sensors
researchProduct

No-core configuration-interaction model for the isospin- and angular-momentum-projected states

2016

[Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level allows for restoring symmetries and, in turn, for calculating transition rates. [Purpose] We propose a new no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. [Metho…

Angular momentumNuclear TheoryNuclear TheoryFOS: Physical sciencesrotational symmetry7. Clean energy01 natural sciencesNuclear Theory (nucl-th)Quantum mechanics0103 physical sciencesNeutronno-core-configuration-interaction (NCCI) modelNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsCoupling constantta114010308 nuclear & particles physicsNuclear shell modelParity (physics)Configuration interactionisospin symmetryQuantum electrodynamicsIsospinnucleiSlater determinantPhysical Review C
researchProduct

Solution of the Skyrme-Hartree–Fock–Bogolyubovequations in the Cartesian deformed harmonic-oscillator basis. (VIII) hfodd (v2.73y): A new version of …

2017

We describe the new version (v2.73y) of the code HFODD which solves the nuclear Skyrme Hartree-Fock or Skyrme Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following new features: (i) full proton-neutron mixing in the particle-hole channel for Skyrme functionals, (ii) the Gogny force in both particle-hole and particle-particle channels, (iii) linear multi-constraint method at finite temperature, (iv) fission toolkit including the constraint on the number of particles in the neck between two fragments, calculation of the interaction energy between fragments, and calculation of the nuclear and Coulomb ene…

Angular momentumNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]SYMMETRYNuclear TheoryHartree–Fock methodGeneral Physics and AstronomyFOS: Physical sciencesGogny forceSkyrme interactionNuclear density functional theorySelf-consistent mean-field01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)Energy density functional theorySYSTEMSQuantum mechanics0103 physical sciences010306 general physicsHarmonic oscillator[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]PhysicsHartree–Fock–Bogolyubovta114010308 nuclear & particles physicsAugmented Lagrangian methodInteraction energyAngular-momentum projection113 Computer and information sciencesHardware and ArchitecturePairingIsospintheoretical nuclear physicsSelf-consistent mean fieldHartree-Fock-BogolyubovPairing correlations
researchProduct

Thouless-Valatin Rotational Moment of Inertia from the Linear Response Theory

2017

Spontaneous breaking of continuous symmetries of a nuclear many-body system results in appearance of zero-energy restoration modes. Such modes introduce a non-physical contributions to the physical excitations called spurious Nambu-Goldstone modes. Since they represent a special case of collective motion, they are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total angular momentum operator. We examine the role and effects of the pairing correlations on the rotational cha…

Angular momentumNuclear Theorymedia_common.quotation_subjectNuclear TheoryFOS: Physical sciencesRotary inertiaInertia114 Physical sciences01 natural sciencesbinding energy and massesMoment of inertia factorNuclear Theory (nucl-th)symbols.namesake0103 physical sciences010306 general physicsRotational partition functionEuler's equationsEQUATIONSmedia_commonPhysicsta114nuclear density functional theory010308 nuclear & particles physicstiheysfunktionaaliteoriacollective modelsMoment of inertianuclear structure and decayssuprajuoksevuusRotational energyClassical mechanicssuperfluiditysymbolsydinfysiikka
researchProduct

First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments

2018

We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first ti…

Angular momentumResolution (mass spectrometry)Fission01 natural sciencesIonSubatomär fysikydinreaktiotPrimary (astronomy)0103 physical sciencesSubatomic PhysicsPhysics::Atomic and Molecular ClustersfissionYield ratioPhysics::Atomic PhysicsPhysics::Chemical PhysicsNuclear Experiment010306 general physicsnuclear reactionsPhysicsta114010308 nuclear & particles physicsPenning trapfissioYield (chemistry)Atomic physicsisomer decaysydinfysiikka
researchProduct

Counterdiabatic vortex pump in spinor Bose-Einstein condensates

2017

Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-Einstein condensates of alkali metal atoms. It was recently shown that counter-diabatic quantum control may accelerate vortex creation in comparison to the standard adiabatic protocol and suppress the atom loss due to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case without the counter-diabatic control, leadin…

Angular momentumalkali metalsQuantum controlFOS: Physical sciences01 natural sciencestopological phase imprinting010305 fluids & plasmaslaw.inventionlawQuantum mechanics0103 physical sciences010306 general physicsAdiabatic processPhysicsCondensed Matter::Quantum GasesSpinorta114Winding numberBose-Einstein condensatesVortexNumerical integrationvortex pumpsQuantum Gases (cond-mat.quant-gas)Condensed Matter - Quantum GasesBose–Einstein condensatealkalimetallitPhysical Review A
researchProduct

Simultaneous endo and exo  Complex Formation of Pyridine[4]arene Dimers with Neutral and Anionic Guests

2017

The formation of complexes between hexafluorophosphate (PF6- ) and tetraisobutyloctahydroxypyridine[4]arene has been thoroughly studied in the gas phase (ESI-QTOF-MS, IM-MS, DFT calculations), in the solid state (X-ray crystallography), and in chloroform solution (1 H, 19 F, and DOSY NMR spectroscopy). In all states of matter, simultaneous endo complexation of solvent molecules and exo complexation of a PF6- anion within a pyridine[4]arene dimer was observed. While similar ternary complexes are often observed in the solid state, this is a unique example of such behavior in the gas phase.

Anion bindingStereochemistryhexafluorophosphateDimeraromatic hydrocarbonsIon mobility mass spectrometrycoordination complex010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundHexafluorophosphatePyridineMoleculePyridine[4]arenesAnion bindingta116Chloroformta114Resorcinarenes010405 organic chemistryGeneral ChemistryNuclear magnetic resonance spectroscopy0104 chemical sciencesSolventCrystallographychemistryMolecular recognitionAngewandte Chemie International Edition
researchProduct