Search results for "ta114"
showing 10 items of 1144 documents
Effect of innervation zones in estimating biceps brachii force-EMG relationship during isometric contraction
2012
Measuring muscle forces in vivo is invasive and consequently indirect methods e.g., electromyography (EMG) are used in estimating muscular force production. The aim of the present paper was to examine what kind of effect the disruption of the physiological signal caused by the innervation zone has in predicting the force/torque output from surface EMG. Twelve men (age 26 (SD ±3)years; height 179 (±6)cm; body mass 73 (±6)kg) volunteered as subjects. They were asked to perform maximal voluntary isometric contraction (MVC) in elbow flexion, and submaximal contractions at 10%, 20%, 30%, 40%, 50% and 75% of the recorded MVC. EMG was measured from biceps brachii muscle with an electrode grid of 5…
Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking.
2013
This study was conducted to analyze the unimpaired control of the trunk during walking. Studying the unimpaired control of the trunk reveals characteristics of good control. These characteristics can be pursued in the rehabilitation of impaired control. Impaired control of the trunk during walking is associated with aging and many movement disorders. This is a concern as it is considered to increase fall risk. Muscles that contribute to the trunk control in normal walking may also contribute to it under perturbation circumstances, attempting to prevent an impending fall. Knowledge of such muscles can be used to rehabilitate impaired control of the trunk. Here, angular accelerations of the t…
From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials
2010
Phase-change optical memories are based on the astonishingly rapid nanosecond-scale crystallization of nanosized amorphous 'marks' in a polycrystalline layer. Models of crystallization exist for the commercially used phase-change alloy Ge(2)Sb(2)Te(5) (GST), but not for the equally important class of Sb-Te-based alloys. We have combined X-ray diffraction, extended X-ray absorption fine structure and hard X-ray photoelectron spectroscopy experiments with density functional simulations to determine the crystalline and amorphous structures of Ag(3.5)In(3.8)Sb(75.0)Te(17.7) (AIST) and how they differ from GST. The structure of amorphous (a-) AIST shows a range of atomic ring sizes, whereas a-GS…
Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection
2019
In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots are functionalized with capture DNA sequences complementary to the analyte (target) DNA. Upon incubation with the target sequence, it will bind on the respectively complementary functionalized particle spot. This binding changes the local refractive index, which is detected spectroscopically as the resulting changes of the localized surface plasmon resonance (LSPR) peak wavelength. In order to increase the signal, a small gold nanoparticle label is introduced. The binding ca…
No-core configuration-interaction model for the isospin- and angular-momentum-projected states
2016
[Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level allows for restoring symmetries and, in turn, for calculating transition rates. [Purpose] We propose a new no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. [Metho…
Solution of the Skyrme-Hartree–Fock–Bogolyubovequations in the Cartesian deformed harmonic-oscillator basis. (VIII) hfodd (v2.73y): A new version of …
2017
We describe the new version (v2.73y) of the code HFODD which solves the nuclear Skyrme Hartree-Fock or Skyrme Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following new features: (i) full proton-neutron mixing in the particle-hole channel for Skyrme functionals, (ii) the Gogny force in both particle-hole and particle-particle channels, (iii) linear multi-constraint method at finite temperature, (iv) fission toolkit including the constraint on the number of particles in the neck between two fragments, calculation of the interaction energy between fragments, and calculation of the nuclear and Coulomb ene…
Thouless-Valatin Rotational Moment of Inertia from the Linear Response Theory
2017
Spontaneous breaking of continuous symmetries of a nuclear many-body system results in appearance of zero-energy restoration modes. Such modes introduce a non-physical contributions to the physical excitations called spurious Nambu-Goldstone modes. Since they represent a special case of collective motion, they are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total angular momentum operator. We examine the role and effects of the pairing correlations on the rotational cha…
First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments
2018
We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first ti…
Counterdiabatic vortex pump in spinor Bose-Einstein condensates
2017
Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-Einstein condensates of alkali metal atoms. It was recently shown that counter-diabatic quantum control may accelerate vortex creation in comparison to the standard adiabatic protocol and suppress the atom loss due to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case without the counter-diabatic control, leadin…
Simultaneous endo and exo Complex Formation of Pyridine[4]arene Dimers with Neutral and Anionic Guests
2017
The formation of complexes between hexafluorophosphate (PF6- ) and tetraisobutyloctahydroxypyridine[4]arene has been thoroughly studied in the gas phase (ESI-QTOF-MS, IM-MS, DFT calculations), in the solid state (X-ray crystallography), and in chloroform solution (1 H, 19 F, and DOSY NMR spectroscopy). In all states of matter, simultaneous endo complexation of solvent molecules and exo complexation of a PF6- anion within a pyridine[4]arene dimer was observed. While similar ternary complexes are often observed in the solid state, this is a unique example of such behavior in the gas phase.