Search results for "ta214"

showing 10 items of 55 documents

Subcomponent Self-Assembly A Quick Way to New Metallogels

2013

Subcomponent self-assembly, introduced by the Nitschke group,[1] is a process which allow complex structures to be generated from simple building blocks (generally aldehydes and amines). In this bottom-up approach, the building blocks spontaneously self-assemble around templates (usually metal ions) leading to a simultaneous covalent (C=N) and dative (N– metal) bonds formation. The method has been successfully used to construct well-defined metal-organic macrocycles, helicates, catenanes, rotaxanes, grids,[2] and cages.[3] Our field of interest lies not in building-up of defined structures but in designing gelator molecules for a formation of supramolecular gels as functional nanomaterials.…

SUPRAMOLECULAR GELSMetal ions in aqueous solutionta221GELATORSSupramolecular chemistryNanoparticleNanotechnologymetallogeelimultistimuli responsive010402 general chemistrySmart material01 natural sciencesCatalysisMOLECULESMoleculeta116ta218ta214ta114010405 organic chemistryChemistryIN-SITUOrganic ChemistryGeneral Chemistryself-assemblygelsGELATION0104 chemical sciencesin situ gelationMETALnanoparticlesSelf-assemblymetallogelCHEMISTRY: A EUROPEAN JOURNAL
researchProduct

Low-temperature atomic layer deposition of SiO2/Al2O3 multilayer structures constructed on self-standing films of cellulose nanofibrils

2018

In this paper, we have optimized a low-temperature atomic layer deposition (ALD) of SiO 2 using AP-LTO® 330 and ozone (O 3 ) as precursors, and demonstrated its suitability to surface-modify temperature-sensitive bio-based films of cellulose nanofibrils (CNFs). The lowest temperature for the thermal ALD process was 80°C when the silicon precursor residence time was increased by the stop-flow mode. The SiO 2 film deposition rate was dependent on the temperature varying within 1.5–2.2 Å cycle −1 in the temperature range of 80–350°C, respectively. The low-temperature SiO 2 process that resulted was combined with the conventional trimethyl aluminium + H 2 O process in order to prepare thin mul…

Water sensitivityMaterials scienceDiffusion barrierSiliconGeneral Mathematicsta221General Physics and Astronomychemistry.chemical_element02 engineering and technology01 natural sciencesOxygenAtomic layer depositionchemistry.chemical_compoundnanorakenteetHybrid multilayersSiO0103 physical sciencesCelluloseta216diffusion barrierta218low-temperature atomic layer depositionDiffusion barrierLow-temperature atomic layer deposition010302 applied physicsta214ta114water sensitivityta111General Engineeringcellulose nanofibrilsAtmospheric temperature range021001 nanoscience & nanotechnologyhybrid multilayerschemistryChemical engineeringCellulose nanofibrilsohutkalvotSiO20210 nano-technologyLayer (electronics)Water vaporPhilosophical Transactions of the Royal Society A : Mathematical Physical and Engineering Sciences
researchProduct

Bulk morphologies of polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) triblock terpolymers

2015

Abstract The self-assembly of block copolymers in the bulk phase enables the formation of complex nanostructures with sub 100 nm periodicities and long-range order, both relevant for nanotechnology applications. Here, we map the bulk phase behavior of polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) (SBT) triblock terpolymers on a series of narrowly distributed polymers with widely different block volume fractions, ϕS, ϕB and ϕT. In dependence of ϕ, we find the lamella–lamella, core-shell cylinder, cylinder-in-lamella and core-shell gyroid morphology, but also a rarely observed cylinder-in-lamella phase. The bulk morphologies are thoroughly characterized by transmission e…

chemistry.chemical_classificationta214Materials scienceta114Polymers and PlasticsSmall-angle X-ray scatteringta221Organic Chemistryblock copolymerPolymerMethacrylateCrystallographychemistry.chemical_compoundPolybutadienesmall-angle x-ray scattering (SAXS)Chemical engineeringchemistryPhase (matter)morphologytransmission electron microscopy (TEM)Materials ChemistryCopolymerPolystyreneta218GyroidPolymer
researchProduct

Squeezing of Quantum Noise of Motion in a Micromechanical Resonator

2015

A pair of conjugate observables, such as the quadrature amplitudes of harmonic motion, have fundamental fluctuations which are bound by the Heisenberg uncertainty relation. However, in a squeezed quantum state, fluctuations of a quantity can be reduced below the standard quantum limit, at the cost of increased fluctuations of the conjugate variable. Here we prepare a nearly macroscopic moving body, realized as a micromechanical resonator, in a squeezed quantum state. We obtain squeezing of one quadrature amplitude $1.1 \pm 0.4$ dB below the standard quantum limit, thus achieving a long-standing goal of obtaining motional squeezing in a macroscopic object.

educationta221squeezingGeneral Physics and AstronomyQuantum measurementMotion (geometry)FOS: Physical sciencesQuantitative Biology::Subcellular ProcessesResonatorMeasurement theoryVibrating membraneQuantum mechanicsmotionMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Chemical Physicsta218Physicsmicromechanical resonatorta214Condensed Matter - Mesoscale and Nanoscale Physicsta114Quantum limitPhysicsQuantum noisequantum noise16. Peace & justicenanomechanicsquantum physicsQuantum Physics (quant-ph)NanomechanicsPHYSICAL REVIEW LETTERS
researchProduct

Enhancing Optomechanical Coupling via the Josephson Effect

2013

Cavity optomechanics is showing promise for studying quantum mechanics in large systems. However, smallness of the radiation-pressure coupling is a serious hindrance. Here we show how the charge tuning of the Josephson inductance in a single-Cooper-pair transistor (SCPT) can be exploited to arrange a strong radiation pressure -type coupling $g_0$ between mechanical and microwave resonators. In a certain limit of parameters, such a coupling can also be seen as a qubit-mediated coupling of two resonators. We show that this scheme allows reaching extremely high $g_0$. Contrary to the recent proposals for exploiting the non-linearity of a large radiation pressure coupling, the main non-linearit…

electromagnetic fieldsJosephson effectmicromechanical resonatorsPhononta221FOS: Physical sciencesGeneral Physics and AstronomyType (model theory)01 natural sciencesvibrationsSuperconductivity (cond-mat.supr-con)010309 opticsResonatorMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsta218OptomechanicsPhysicsQuantum Physicsta214ta114Condensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsPhysicsCondensed Matter - SuperconductivityJosephson effectCharge (physics)Coupling (probability)cavity optomechanical systemsQuantum Physics (quant-ph)Coupling coefficient of resonatorsPhysical Review Letters
researchProduct

Protected but Accessible: Oxygen Activation by a Calixarene-Stabilized Undecagold Cluster

2013

DFT computations show that calixarenes stabilize subnanometer Au11 clusters allowing access of small molecules like O2 to reactive metal sites in the core. Maximum of three dioxygen molecules can bind to the cluster, and they are activated to a superoxo O2(-) state. This study predicts that gold clusters could act as viable oxidation catalysts at ambient conditions based on similar principles as the metal centers in enzymes.

inorganic chemicalsta214ta114ChemistryInorganic chemistrychemistry.chemical_elementGeneral ChemistryPhotochemistryBiochemistrySmall moleculeOxygenCatalysisCatalysisMetalColloid and Surface Chemistryvisual_artUndecagoldCalixarenevisual_art.visual_art_mediumCluster (physics)MoleculeJournal of the American Chemical Society
researchProduct

Predicting stiffness and strength of birch pulp:Polylactic acid composites

2016

This paper studies failure of birch pulp–polylactic acid composites. Stiffness and strength are calculated using the theory of short fibre composites and the results are compared to experimental data. The results differed from the experimental values by 0–6%. With less aligned fibres the short fibre theory is not feasible. The performance of the 40 wt% birch pulp – polylactic acid composite is predicted with X-ray microtomography based finite element modelling, and the results are compared with experiments. Stiffness results differed from experiments by 1–17% . By adding into the models a third material phase representing the interface between the fibres and the matrix, the stress–strain c…

microtomographyMaterials scienceComposite number02 engineering and technologyengineering.materialshort fibre composites strengthchemistry.chemical_compoundfibres0203 mechanical engineeringPolylactic acidimage analysisMaterials Chemistrymedicinepolymer matrix compositesComposite materialta216finite element modellingProperTunekuidutta214modelta114Mechanical EngineeringPulp (paper)Wood-plastic compositeStiffness021001 nanoscience & nanotechnologyMicrostructureFinite element method020303 mechanical engineering & transportschemistryshort fibre compositesMechanics of Materialskuva-analyysiCeramics and Compositesengineeringmedicine.symptomelastic properties0210 nano-technologystrengthelastiv properties
researchProduct

Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations

2015

We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag$_{55}$ (1.06 nm), Ag$_{147}$ (1.60 nm), Ag$_{309}$ (2.14 nm), and Ag$_{561}$ (2.68 nm). The simulation method combines the adiabatic GLLB-SC exchange-correlation functional with real time propagation in an atomic orbital basis set using the projector-augmented wave method. The method has been implemented for the electron structure…

silver nanoparticlesMaterials scienceta221Ab initioFOS: Physical sciencesMetal nanoparticlesMolecular physicsAtomic orbitalTime-dependent density functional theorySurface plasmon resonanceta116ta218Basis setPlasmonCondensed Matter - Materials Scienceta214ta114Condensed matter physicsMaterials Science (cond-mat.mtrl-sci)Time-dependent density functional theoryCondensed Matter PhysicsNanoshellElectronic Optical and Magnetic MaterialsPlasmonicssurface plasmon resonanceLocalized surface plasmonPhysical Review B
researchProduct

Gear classification and fault detection using a diffusion map framework

2015

This article proposes a system health monitoring approach that detects abnormal behavior of machines. Diffusion map is used to reduce the dimensionality of training data, which facilitates the classification of newly arriving measurements. The new measurements are handled with Nyström extension. The method is trained and tested with real gear monitoring data from several windmill parks. A machine health index is proposed, showing that data recordings can be classified as working or failing using dimensionality reduction and warning levels in the low dimensional space. The proposed approach can be used with any system that produces high-dimensional measurement data. peerReviewed

ta113Diffusion (acoustics)Training setta214Computer scienceDimensionality reductiondiffusion mapExtension (predicate logic)computer.software_genreFault detection and isolationfault detectionsystem health monitoringArtificial IntelligenceSignal ProcessingComputer Vision and Pattern RecognitionData miningCluster analysiscomputerSoftwareCurse of dimensionalityclustering
researchProduct

Multicriteria evaluation of alternatives for remote monitoring systems of municipal buildings

2014

Abstract Conservation of natural resources drives municipalities to monitor their heat, power and water consumption more accurately. The objective of this study was to evaluate different implementation possibilities for remote monitoring systems for the municipal buildings of two medium-sized municipalities, Hollola and Nastola in Southern Finland. Four different alternatives were considered: (1) a system by an external service provider, (2) a system provided by the local energy distribution company, (3) a system built by the municipalities themselves, and (4) using the current manual system but with more frequent data collection. The alternatives were evaluated in terms of multiple functio…

ta212EngineeringStochastic multicriteria acceptability analysista214Energy distributionData collectionOperations researchbusiness.industryMechanical Engineeringta1172Environmental resource managementMonitoring systemBuilding and ConstructionService providerNatural resourceWater consumptionta519Electrical and Electronic Engineeringbusinessta116ta218Civil and Structural EngineeringEnergy and Buildings
researchProduct