Search results for "ta214"
showing 10 items of 55 documents
Subcomponent Self-Assembly A Quick Way to New Metallogels
2013
Subcomponent self-assembly, introduced by the Nitschke group,[1] is a process which allow complex structures to be generated from simple building blocks (generally aldehydes and amines). In this bottom-up approach, the building blocks spontaneously self-assemble around templates (usually metal ions) leading to a simultaneous covalent (C=N) and dative (N– metal) bonds formation. The method has been successfully used to construct well-defined metal-organic macrocycles, helicates, catenanes, rotaxanes, grids,[2] and cages.[3] Our field of interest lies not in building-up of defined structures but in designing gelator molecules for a formation of supramolecular gels as functional nanomaterials.…
Low-temperature atomic layer deposition of SiO2/Al2O3 multilayer structures constructed on self-standing films of cellulose nanofibrils
2018
In this paper, we have optimized a low-temperature atomic layer deposition (ALD) of SiO 2 using AP-LTO® 330 and ozone (O 3 ) as precursors, and demonstrated its suitability to surface-modify temperature-sensitive bio-based films of cellulose nanofibrils (CNFs). The lowest temperature for the thermal ALD process was 80°C when the silicon precursor residence time was increased by the stop-flow mode. The SiO 2 film deposition rate was dependent on the temperature varying within 1.5–2.2 Å cycle −1 in the temperature range of 80–350°C, respectively. The low-temperature SiO 2 process that resulted was combined with the conventional trimethyl aluminium + H 2 O process in order to prepare thin mul…
Bulk morphologies of polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) triblock terpolymers
2015
Abstract The self-assembly of block copolymers in the bulk phase enables the formation of complex nanostructures with sub 100 nm periodicities and long-range order, both relevant for nanotechnology applications. Here, we map the bulk phase behavior of polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) (SBT) triblock terpolymers on a series of narrowly distributed polymers with widely different block volume fractions, ϕS, ϕB and ϕT. In dependence of ϕ, we find the lamella–lamella, core-shell cylinder, cylinder-in-lamella and core-shell gyroid morphology, but also a rarely observed cylinder-in-lamella phase. The bulk morphologies are thoroughly characterized by transmission e…
Squeezing of Quantum Noise of Motion in a Micromechanical Resonator
2015
A pair of conjugate observables, such as the quadrature amplitudes of harmonic motion, have fundamental fluctuations which are bound by the Heisenberg uncertainty relation. However, in a squeezed quantum state, fluctuations of a quantity can be reduced below the standard quantum limit, at the cost of increased fluctuations of the conjugate variable. Here we prepare a nearly macroscopic moving body, realized as a micromechanical resonator, in a squeezed quantum state. We obtain squeezing of one quadrature amplitude $1.1 \pm 0.4$ dB below the standard quantum limit, thus achieving a long-standing goal of obtaining motional squeezing in a macroscopic object.
Enhancing Optomechanical Coupling via the Josephson Effect
2013
Cavity optomechanics is showing promise for studying quantum mechanics in large systems. However, smallness of the radiation-pressure coupling is a serious hindrance. Here we show how the charge tuning of the Josephson inductance in a single-Cooper-pair transistor (SCPT) can be exploited to arrange a strong radiation pressure -type coupling $g_0$ between mechanical and microwave resonators. In a certain limit of parameters, such a coupling can also be seen as a qubit-mediated coupling of two resonators. We show that this scheme allows reaching extremely high $g_0$. Contrary to the recent proposals for exploiting the non-linearity of a large radiation pressure coupling, the main non-linearit…
Protected but Accessible: Oxygen Activation by a Calixarene-Stabilized Undecagold Cluster
2013
DFT computations show that calixarenes stabilize subnanometer Au11 clusters allowing access of small molecules like O2 to reactive metal sites in the core. Maximum of three dioxygen molecules can bind to the cluster, and they are activated to a superoxo O2(-) state. This study predicts that gold clusters could act as viable oxidation catalysts at ambient conditions based on similar principles as the metal centers in enzymes.
Predicting stiffness and strength of birch pulp:Polylactic acid composites
2016
This paper studies failure of birch pulp–polylactic acid composites. Stiffness and strength are calculated using the theory of short fibre composites and the results are compared to experimental data. The results differed from the experimental values by 0–6%. With less aligned fibres the short fibre theory is not feasible. The performance of the 40 wt% birch pulp – polylactic acid composite is predicted with X-ray microtomography based finite element modelling, and the results are compared with experiments. Stiffness results differed from experiments by 1–17% . By adding into the models a third material phase representing the interface between the fibres and the matrix, the stress–strain c…
Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations
2015
We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag$_{55}$ (1.06 nm), Ag$_{147}$ (1.60 nm), Ag$_{309}$ (2.14 nm), and Ag$_{561}$ (2.68 nm). The simulation method combines the adiabatic GLLB-SC exchange-correlation functional with real time propagation in an atomic orbital basis set using the projector-augmented wave method. The method has been implemented for the electron structure…
Gear classification and fault detection using a diffusion map framework
2015
This article proposes a system health monitoring approach that detects abnormal behavior of machines. Diffusion map is used to reduce the dimensionality of training data, which facilitates the classification of newly arriving measurements. The new measurements are handled with Nyström extension. The method is trained and tested with real gear monitoring data from several windmill parks. A machine health index is proposed, showing that data recordings can be classified as working or failing using dimensionality reduction and warning levels in the low dimensional space. The proposed approach can be used with any system that produces high-dimensional measurement data. peerReviewed
Multicriteria evaluation of alternatives for remote monitoring systems of municipal buildings
2014
Abstract Conservation of natural resources drives municipalities to monitor their heat, power and water consumption more accurately. The objective of this study was to evaluate different implementation possibilities for remote monitoring systems for the municipal buildings of two medium-sized municipalities, Hollola and Nastola in Southern Finland. Four different alternatives were considered: (1) a system by an external service provider, (2) a system provided by the local energy distribution company, (3) a system built by the municipalities themselves, and (4) using the current manual system but with more frequent data collection. The alternatives were evaluated in terms of multiple functio…