Search results for "terahertz"

showing 10 items of 152 documents

Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20

2018

Identifying materials with an efficient spin-to-charge conversion is crucial for future spintronic applications. In this respect, the spin Hall effect is a central mechanism as it allows for the interconversion of spin and charge currents. Spintronic material research aims at maximizing its efficiency, quantified by the spin Hall angle and the spin-current relaxation length . We develop an all-optical contact-free method with large sample throughput that allows us to extract and . Employing terahertz spectroscopy and an analytical model, magnetic metallic heterostructures involving Pt, W and Cu80Ir20 are characterized in terms of their optical and spintronic properties. The validity of our …

Materials scienceAcoustics and Ultrasonics530 Physicsterahertz emission spectroscopyFOS: Physical sciences02 engineering and technology01 natural sciencesTransition metalHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ultrafast spincaloritronics010306 general physicsSpectroscopyComputingMilieux_MISCELLANEOUSterahertz emission spectroscopy; terahertz transmission spectroscopy; ultrafast spintronics; ultrafast spincaloritronicsCondensed Matter - Materials ScienceSpintronicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryRelaxation (NMR)Refractory metalsMaterials Science (cond-mat.mtrl-sci)621021001 nanoscience & nanotechnologyCondensed Matter Physics530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall Effect3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTerahertz spectroscopy and technologyterahertz transmission spectroscopyultrafast spintronicsSpin Hall effect[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Optoelectronics0210 nano-technologybusiness
researchProduct

THz nanocrystal acoustic vibrations from ZrO2 3D supercrystals

2013

International audience; We report sharp low-frequency Raman spectral features of supercrystals synthesized via the "benzyl alcohol route" and consisting of either yttrium-stabilized or pure zirconia (ZrO2) nanocrystals. In situ formed benzoate species control the nanocrystal growth and act as organic glue leading to the assembly of the nanocrystals in highly ordered 3D supercrystals. We attribute some Raman peaks to THz acoustic vibrations of individual nanocrystals which are only weakly coupled due to the strong acoustic mismatch between the capping ligands and the nanocrystals. Peak positions are consistent with nanocrystal sizes estimated from transmission electron microscopy and X-ray p…

Materials scienceAnnealing (metallurgy)PhononTerahertz radiation[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Nanotechnology02 engineering and technology010402 general chemistry01 natural sciencessymbols.namesakeMaterials ChemistryCubic zirconiabusiness.industryGeneral Chemistry021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesNanocrystalTransmission electron microscopysymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Optoelectronics0210 nano-technologybusinessRaman spectroscopyPowder diffraction
researchProduct

Terahertz Spectroscopy of Ordered PbSc1/2Nb1/2O3Ceramics

2008

Materials scienceCondensed matter physicsGeneral Physics and AstronomyTerahertz spectroscopy and technologyActa Physica Polonica A
researchProduct

Asymmetric Dual-Grating Micro-Slit Configuration for Broadband Solid State Coherent Detection of THz Pulses

2016

We demonstrated solid-state broadband coherent Terahertz characterization based on the Terahertz Field Induced Second Harmonic effect in Silica. The THz detector consists of an asymmetric micro-slit array which can be operated at 200V applied bias.

Materials scienceField (physics)business.industryTerahertz radiationSolid-statePhysics::Optics02 engineering and technologyGrating021001 nanoscience & nanotechnology01 natural sciencesSlitTerahertz spectroscopy and technology0103 physical sciencesBroadbandHarmonicOptoelectronics010306 general physics0210 nano-technologybusiness
researchProduct

Kinetic Ionic Permeation and Interfacial Doping of Supported Graphene

2019

Due to its outstanding electrical properties and chemical stability, graphene finds widespread use in various electrochemical applications. Although the presence of electrolytes strongly affects its electrical conductivity, the underlying mechanism has remained elusive. Here, we employ terahertz spectroscopy as a contact-free means to investigate the impact of ubiquitous cations (Li+, Na+, K+, and Ca2+) in aqueous solution on the electronic properties of SiO2-supported graphene. We find that, without applying any external potential, cations can shift the Fermi energy of initially hole-doped graphene by ∼200 meV up to the Dirac point, thus counteracting the initial substrate-induced hole dop…

Materials scienceLetterIonic bondingBioengineering02 engineering and technologyElectrolytedopingterahertz spectroscopy7. Clean energylaw.inventionsymbols.namesakeionic permeationlawElectrical resistivity and conductivityDopingGeneral Materials ScienceAqueous solutionGrapheneMechanical EngineeringDopingFermi levelFermi energyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsChemical physicsTerahertz spectroscopysymbolsGraphene0210 nano-technologyIonic permeation
researchProduct

Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions

2021

Anisotropic magnetoresistance (AMR) is a ubiquitous and versatile probe of magnetic order in contemporary spintronics research. Its origins are usually ascribed to extrinsic effects (i.e. spin-dependent electron scattering), whereas intrinsic (i.e. scattering-independent) contributions are neglected. Here, we measure AMR of polycrystalline thin films of the standard ferromagnets Co, Ni, Ni81Fe19 and Ni50Fe50 over the frequency range from DC to 28 THz. The large bandwidth covers the regimes of both diffusive and ballistic intraband electron transport and, thus, allows us to separate extrinsic and intrinsic AMR components. Analysis of the THz response based on Boltzmann transport theory revea…

Materials scienceMagnetoresistanceTerahertz radiation530 PhysicsQC1-999General Physics and AstronomyFOS: Physical sciences01 natural sciences530010305 fluids & plasmasTerahertz time-domain spectroscopy0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ddc:530Thin film010306 general physicsTerahertz time-domain spectroscopySpintronicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryPhysics500 Naturwissenschaften und Mathematik::530 Physik::530 PhysikAnisotropic magnetoresistanceSpintronics530 PhysikFerromagnetismPhotonicsbusinessElectron scattering
researchProduct

Complete intensity and phase characterisation of optical pulse trains at terahertz repetition rates

1999

Complete intensity and phase characterisation of optical pulse trains at terahertz repetition rates is carried out using an adapted frequency-resolved optical gating technique. The experimental characterisation of a 2.5 THz train of dark solitons in an optical fibre is in good agreement with numerical simulations.

Materials scienceOptical fiberRepetition (rhetorical device)business.industryTerahertz radiationPhase (waves)Physics::Opticslaw.inventionIntensity (physics)Pulse (physics)OpticslawTrainElectrical and Electronic EngineeringbusinessElectronics Letters
researchProduct

GigaHertz to TeraHertz Ultrashort Pulse Sources at 1555 nm

2006

We experimentally study the generation of ultrashort pulses through multiple four wave-mixing in optical fibers. Well-separated transform-limited Gaussian pulses are generated at repetition rates ranging from 20 GHz to 1 THz around 1555 nm.

Materials scienceOptical fiberbusiness.industryFiber nonlinear opticsTerahertz radiation020208 electrical & electronic engineeringPhysics::OpticsNonlinear opticsRanging02 engineering and technologylaw.invention020210 optoelectronics & photonicsOpticslawDispersion (optics)0202 electrical engineering electronic engineering information engineeringOptoelectronicsStimulated emissionbusinessUltrashort pulseComputingMilieux_MISCELLANEOUS
researchProduct

Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator

2019

We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a comme…

Materials sciencePhysics and Astronomy (miscellaneous)Terahertz radiation02 engineering and technology01 natural sciences530law.inventionlawantenna-coupled spintronic terahertz emitterslaser oscillator0103 physical sciencesLaser power scaling010302 applied physicsSpintronicsbusiness.industryDynamic rangePhotoconductivityBandwidth (signal processing)500 Naturwissenschaften und Mathematik::530 Physik::530 Physik021001 nanoscience & nanotechnologyLaserFemtosecondOptoelectronicsterahertz emitters0210 nano-technologybusiness
researchProduct

Silicon nitride-based deep sub-λ slit for ultra-broadband THz coherent detection

2018

We report on the characterization of a new type of CMOS-compatible device for terahertz solid-state biased coherent detection, which relies on a 1-µm-wide metallic slit embedded in a thin film of PECVD-grown silicon nitride.

Materials scienceSiliconbusiness.industryTerahertz radiationTerahertzchemistry.chemical_elementNonlinear opticsSettore ING-INF/01 - Elettronica01 natural sciencesTerahertz spectroscopy and technologycoherent detection010309 opticschemistry.chemical_compoundsilicon nitridechemistrySilicon nitride0103 physical sciencesBroadbandOptoelectronicsHeterodyne detectionThin film010306 general physicsbusiness
researchProduct