Search results for "thermoelectric materials"
showing 10 items of 72 documents
Thermal sensor based on a polymer nanofilm
2016
In this work, we have developed a thermal sensor based on poly(3,4 ethylenedioxythiophene) (PEDOT) nanofilms as thermoelectric material. The PEDOT nanofilms have been synthesized by the electrochemical polymerization method. The thicknesses of the films were around 120 nm. The doping level of PEDOT was controlled by chemical reduction using hydrazine. The achieved Seebeck coeficient is 40 uV/K. A PEDOT nanofilm was integrated into an electronic circuit that amplifies the voltage originated from the Seebeck effect. The temperature increment produced by a fingerprint touching the film is enough to switch on a light emitting diode. Peer Reviewed
Cold-atom thermoelectrics
2013
Two coupled reservoirs of cold atoms can be used as a model system to study the thermoelectric effect. [Also see Report by Brantut et al. ]
Fine tuning of thermoelectric performance in phase-separated half-Heusler compounds
2015
Two successful recipes to enhance the thermoelectric performance, namely carrier concentration optimization and reduction of thermal conductivity, have been combined and applied to the p-type (Ti/Zr/Hf)CoSb1−xSnx system. An intrinsic micrometer-scale phase separation increases the phonon scattering and reduces the lattice thermal conductivity. A substitution of 15% Sb by Sn optimizes the electronic properties. Starting from this, further improvement of the thermoelectric properties has been achieved by a fine tuning of the Ti to Hf ratio. The microstructuring of the samples was studied in detail with high-resolution synchrotron powder X-ray diffraction and element mapping electron microscop…
Effect of anion substitution on the structural and transport properties of argyrodites Cu7PSe6−xSx
2019
Inspired by the good performance of argyrodites as ion conducting thermoelectrics and as solid electrolytes we investigated the effect of isovalent S2- substitution for Se2- in Cu7PSe6. At room temperature Cu7PSe6 crystallizes in the primitive cubic β-polymorph of the argyrodite structure and transforms to the face-centered high-temperature (HT) γ-modification above 320 K. The transition for the homologous Cu7PS6 occurs at 510 K. Promising thermoelectric and ion conducting properties are observed only in the HT modification, where the cations are mobile. Using Rietveld refinements against X-ray diffraction data the effect of isovalent S2- substitution for Se2- on the structural and transpor…
Short and long range order of Half-Heusler phases in (Ti,Zr,Hf)CoSb thermoelectric compounds
2016
Abstract The structural properties of (Ti,Zr,Hf)CoSb thermoelectric Half-Heusler compounds were investigated by synchrotron radiation based techniques. The short-range order, in particular the environment of the Co atoms, was studied by extended X-Ray absorption fine structure spectroscopy and the long range order by powder X-Ray diffraction. Structural models were obtained for the single phase materials TiCoSb0.85Sn0.15, ZrCoSb0.85Sn0.15, and HfCoSb0.85Sn0.15. These models were transferred for the phase-separated material Ti0.5Hf0.5CoSb0.85Sn0.15. As a result, proving that each Half-Heusler phase was well ordered, apart from the intermixing of Ti and Hf on its designated crystallographic l…
Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu(2+x)Zn(1-x)GeSe4.
2012
Engineering nanostructure in bulk thermoelectric materials has recently been established as an effective approach to scatter phonons, reducing the phonon mean free path, without simultaneously decreasing the electron mean free path for an improvement of the performance of thermoelectric materials. Herein the synthesis, phase stability, and thermoelectric properties of the solid solutions Cu_(2+x)Zn_(1–x)GeSe_4 (x = 0–0.1) are reported. The substitution of Zn^(2+) with Cu^+ introduces holes as charge carriers in the system and results in an enhancement of the thermoelectric efficiency. Nano-sized impurities formed via phase segregation at higher dopant contents have been identified and are l…
INFLUENCE OF THE CHEMICAL POTENTIAL ON THE CARRIER EFFECTIVE MASS IN THE THERMOELECTRIC SOLID SOLUTION Cu2Zn1-xFexGeSe4
2013
In this paper, we describe the synthesis and characterization of the solid solution Cu 2 Zn 1-x Fe x GeSe 4. Electronic transport data have been analyzed using a single parabolic band model and have been compared to Cu 2+x Zn 1-x GeSe 4. The effective mass of these undoped, intrinsically hole conducting materials increases linearly with increasing carrier concentration, showing a non-parabolic transport behavior within the valence band.
Influence of Compensating Defect Formation on the Doping Efficiency and Thermoelectric Properties of Cu2-ySe1–xBrx
2015
The superionic conductor Cu_(2−δ)Se has been shown to be a promising thermoelectric at higher temperatures because of very low lattice thermal conductivities, attributed to the liquid-like mobility of copper ions in the superionic phase. In this work, we present the potential of copper selenide to achieve a high figure of merit at room temperature, if the intrinsically high hole carrier concentration can be reduced. Using bromine as a dopant, we show that reducing the charge carrier concentration in Cu_(2−δ)Se is in fact possible. Furthermore, we provide profound insight into the complex defect chemistry of bromine doped Cu_(2−δ)Se via various analytical methods and investigate the conseque…
Design, assembly and characterization of silicide-based thermoelectric modules
2016
ID: 1143 In: Energy conversion and management, 13-21. Summary: Highlights•Novel silicide-based thermoelectric modules were experimentally investigated.•The modules produced high power of 1.04 W at 405 °C and 3.24 W at 735 °C.•An estimated module efficiency of 5.3% represent the highest reported for silicide systems.AbstractSilicides have attracted considerable attention for use in thermoelectric generators due mainly to low cost, low toxicity and light weight, in contrast to conventional materials such as bismuth and lead telluride. Most reported work has focused on optimizing the materials properties while little has been done on module testing. In this work we have designed and tested mod…
Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations o…
2015
Within the last decade, novel materials concepts and nanotechnology have resulted in a great increase of the conversion efficiency of thermoelectric materials. Despite this, a mass market for thermoelectric heat-to-electricity conversion is yet to be opened up. One reason for this is that the transfer of the lab records into fabrication techniques which enable thermoelectric generator modules is very challenging. By closing the gap between record lab values and modules, broad industrial applications may become feasible. In this review, we compare three classes of materials, all designed for medium-high to high temperature applications in the field of waste heat recovery: skutterudites, half…