6533b829fe1ef96bd12896d3

RESEARCH PRODUCT

Fine tuning of thermoelectric performance in phase-separated half-Heusler compounds

Claudia FelserBenjamin BalkeJana Marie StahlhofenElisabeth RauschUlrich BurkhardtSiham Ouardi

subject

DiffractionFine-tuningMaterials sciencePhonon scatteringbusiness.industryGeneral ChemistryThermoelectric materialsSynchrotronlaw.inventionThermal conductivitylawPhase (matter)Thermoelectric effectMaterials ChemistryOptoelectronicsbusiness

description

Two successful recipes to enhance the thermoelectric performance, namely carrier concentration optimization and reduction of thermal conductivity, have been combined and applied to the p-type (Ti/Zr/Hf)CoSb1−xSnx system. An intrinsic micrometer-scale phase separation increases the phonon scattering and reduces the lattice thermal conductivity. A substitution of 15% Sb by Sn optimizes the electronic properties. Starting from this, further improvement of the thermoelectric properties has been achieved by a fine tuning of the Ti to Hf ratio. The microstructuring of the samples was studied in detail with high-resolution synchrotron powder X-ray diffraction and element mapping electron microscopy. Linking the structural with the thermoelectric properties, a record thermoelectric figure of merit for p-type half-Heusler compounds of ZT ≈ 1.2 at 710 °C in Ti0.25Hf0.75CoSb0.85Sn0.15 was achieved. The phase separation approach can form a significant alternative to nanostructuring processing, saving time, energy consumption and increasing the thermoelectric efficiency.

https://doi.org/10.1039/c5tc01196e