0000000000006099
AUTHOR
Siham Ouardi
Symmetry of valence states of Heusler compounds explored by linear dichroism in hard-x-ray photoelectron spectroscopy.
This study reports on the linear dichroism in angular-resolved photoemission from the valence band of the Heusler compounds ${\mathrm{NiTi}}_{0.9}{\mathrm{Sc}}_{0.1}\mathrm{Sn}$ and NiMnSb. High-resolution photoelectron spectroscopy was performed with an excitation energy of $h\ensuremath{\nu}=7.938\text{ }\text{ }\mathrm{keV}$. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. The valence band spectra exhibit the typical structure expected from first-principles calculations of the electronic structure of these compounds. Noticeable linear dichroism is found in the valence band of both materials, and this allows for a symmetry analysis of the cont…
Hard x-ray photoelectron spectroscopy of buried Heusler compounds
This work reports on high energy photoelectron spectroscopy from the valence band of buried Heusler thin films (Co2MnSi and Co2FeAl0.5Si0.5) excited by photons of about 6?keV energy. The measurements were performed on thin films covered by MgO and SiOx with different thicknesses from 1 to 20?nm of the insulating layer and additional AlOx or Ru protective layers. It is shown that the insulating layer does not affect the high energy spectra of the Heusler compound close to the Fermi energy. The high resolution measurements of the valence band close to the Fermi energy indicate a very large electron mean free path of the electrons through the insulating layer. The spectra of the buried thin fi…
Thermomagnetic Materials: Thermomagnetic Properties Improved by Self-Organized Flower-Like Phase Separation of Ferromagnetic Co2Dy0.5Mn0.5Sn (Adv. Funct. Mater. 9/2012)
High energy, high resolution photoelectron spectroscopy of Co2Mn(1-x)Fe(x)Si
This work reports on high resolution photoelectron spectroscopy for the valence band of Co2Mn(1-x)Fe(x)Si (x=0,0.5,1) excited by photons of about 8 keV energy. The measurements show a good agreement to calculations of the electronic structure using the LDA+U scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared to low energy XPS spectra. The high resolution measurements of the valence band close to the Fermi energy indicate the existence of the gap in the minority states for all three alloys.
Half-metallic compensated ferrimagnetism with a tunable compensation point over a wide temperature range in the Mn-Fe-V-Al Heusler system
The cubic Heusler compound Mn1.5FeV0.5Al with the L21 Heusler structure is the first fully compensated half-metallic ferrimagnet with 24 valence electrons. The ferrimagnetic state can be tuned by changing the composition such that the compensation point appears at finite temperatures ranging from 0 K up to 226 K, while retaining half-metallicity in the system. In this paper, the structural, magnetic and transport properties of the Mn-Fe-V-Al system are discussed. Magnetic reversal and a change of sign of the anomalous Hall effect were observed at the compensation point, which gives rise to a sublattice spin-crossing. These materials present new possibilities for potential spintronic devices…
Itinerant half-metallic ferromagnetsCo2TiZ(Z=Si, Ge, Sn):Ab initiocalculations and measurement of the electronic structure and transport properties
This work reports on ab initio calculations and experiments on the half-metallic ferromagnetic Heusler compounds ${\text{Co}}_{2}\text{Ti}Z$ $(Z=\text{Si},\text{ }\text{Ge},\text{ }\text{Sn})$. Aim is a comprehensive study of the electronic-structure and thermoelectric properties. The impact of the variation in the main group element $Z$ on those properties is discussed. X-ray diffraction was performed on the compounds and the lattice parameters are compared to other ${\text{Co}}_{2}$-based compounds. Hard x-ray photoemission measurements were carried out and the results are compared to the calculated electronic structure. The experimentally determined electronic structure, magnetic propert…
Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compoundMn1.5FeV0.5Al
The Slater-Pauling rule states that $L{2}_{1}$ Heusler compounds with 24 valence electrons never exhibit a total spin magnetic moment. In the case of strongly localized magnetic moments at one of the atoms (here Mn) they will exhibit a fully compensated half-metallic ferrimagnetic state instead, in particular, when symmetry does not allow for antiferromagnetic order. With the aid of magnetic and anomalous Hall effect measurements, it is experimentally demonstrated that ${\mathrm{Mn}}_{1.5}{\mathrm{V}}_{0.5}\mathrm{FeAl}$ follows such a scenario. The ferrimagnetic state is tuned by the composition. A small residual magnetization, which arises due to a slight mismatch of the magnetic moments …
Electronic transport properties of electron- and hole-doped semiconductingC1bHeusler compounds:NiTi1−xMxSn(M=Sc,V)
The substitutional series of Heusler compounds ${\text{NiTi}}_{1\ensuremath{-}x}{M}_{x}\text{Sn}$ (where $M=\text{Sc},\text{V}$ and $0lx\ensuremath{\le}0.2$) were synthesized and investigated with respect to their electronic structure and transport properties. The results show the possibility to create $n$-type and $p$-type thermoelectrics within one Heusler compound. The electronic structure and transport properties were calculated by all-electron ab initio methods and compared to the measurements. Hard x-ray photoelectron spectroscopy was carried out and the results are compared to the calculated electronic structure. Pure NiTiSn exhibits massive ``in gap'' states containing about 0.1 ele…
Spin-resolved low-energy and hard x-ray photoelectron spectroscopy of off-stoichiometric Co2MnSi Heusler thin films exhibiting a record TMR
Half-metallic Co2MnSi-based Heusler compounds have attracted attention because they yield very high tunnelling magnetoresistance (TMR) ratios. Record TMR ratios of 1995% (at 4.2 K) are obtained from off-stoichiometric Co2MnSi-based magnetic tunnel junctions. This work reports on a combination of band structure calculations and spin-resolved and photon-polarisation-dependent photoelectron spectroscopy for off-stoichiometric Heusler thin films with the composition Co2Mn1.30Si0.84. Co and Mn are probed by magnetic dichroism in angle-resolved photoelectron spectroscopy at the 2p core level. In contrast to the delocalised Co 3d states, a pronounced localisation of the Mn 3d states is deduced fro…
Electronic and crystallographic structure, hard x-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co2MnGe
This work reports on the electronic and crystalline structure and the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co${}_{2}$MnGe. The crystalline structure was examined in detail by extended x-ray absorption fine-structure spectroscopy and anomalous x-ray diffraction. The compound exhibits a well-ordered $L{2}_{1}$ structure as is typical for Heusler compounds with 2:1:1 stoichiometry. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab initiocalculations. Transport measurements and hard x-ray photoelectron spectroscopy were performed t…
Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation
A novel approach for optimization of the thermoelectric properties of p-type Heusler compounds with a C1b structure was investigated. A successful recipe for achieving intrinsic phase separation in the n-type material based on the TiNiSn system is isoelectronic partial substitution of Ti with its heavier homologues Zr and Hf. We applied this concept to the p-type system MCoSb0.8Sn0.2 by a systematic investigation of samples with different compositions at the Ti position (M = Ti, Zr, Hf, Ti0.5Zr0.5, Zr0.5Hf0.5, and Ti0.5Hf0.5). We thus achieved an approximately 40% reduction of the thermal conductivity and a maximum figure of merit ZT of 0.9 at 700 °C. This is a 80% improvement in peak ZT fr…
Probing the electronic states of high-TMR off-stoichiometric Co2MnSi thin films by hard x-ray photoelectron spectroscopy
The tunnel magnetoresistance ratio (TMR) of fully epitaxial magnetic tunnel junctions with an off-stoichiometric Co${}_{2}$MnSi Heusler alloy has been shown to exhibit a systematic dependence on Mn content, reaching 1135% at 4.2 K for Co${}_{2}$Mn${}_{1.29}$Si. In this paper, we explain the behavior of the observed TMR ratio using ab initio calculations and hard x-ray photoelectron spectroscopy (HAXPES). For the Mn-deficient samples, we show that the the drop of the TMR is caused by Co antisite atoms, which impose extra states into the minority-spin band gap. On the other hand, Mn-excess composition shows nearly half-metallic behavior. This result can be intuitively understood since both Co…
Fine tuning of thermoelectric performance in phase-separated half-Heusler compounds
Two successful recipes to enhance the thermoelectric performance, namely carrier concentration optimization and reduction of thermal conductivity, have been combined and applied to the p-type (Ti/Zr/Hf)CoSb1−xSnx system. An intrinsic micrometer-scale phase separation increases the phonon scattering and reduces the lattice thermal conductivity. A substitution of 15% Sb by Sn optimizes the electronic properties. Starting from this, further improvement of the thermoelectric properties has been achieved by a fine tuning of the Ti to Hf ratio. The microstructuring of the samples was studied in detail with high-resolution synchrotron powder X-ray diffraction and element mapping electron microscop…
Thermomagnetic Properties Improved by Self-Organized Flower-Like Phase Separation of Ferromagnetic Co2Dy0.5Mn0.5Sn
A thermodynamically stable phase separation of Co2Dy0.5Mn0.5Sn into the Heusler compound Co2MnSn and Co8Dy3Sn4 is induced by rapid cooling from the liquid phase. The phase separation forms an ordered flower-like structure on the microscale. The increased scattering of phonons at the phase boundaries reduces the thermal conductivity and thus improves thermoelectric and spincaloric properties.
Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMnZ(Z=Al, Ga, Si, Ge)
The quaternary intermetallic Heusler compounds CoFeMn$Z$ ($Z=\text{Al}$, Ga, Si, or Ge) with $1:1:1:1$ stoichiometry were predicted to exhibit half-metallic ferromagnetism by ab initio electronic structure calculations. The compounds were synthesized using an arc-melting technique and the crystal structures were analyzed using x-ray powder diffraction. The electronic properties were investigated using hard x-ray photoelectron spectroscopy. The low-temperature magnetic moments, as determined from magnetization measurements, follow the Slater-Pauling rule, confirming the proposed high spin polarizations. All compounds have high Curie temperatures, allowing for applications at room temperature…
Charge carrier concentration optimization of thermoelectric p-type half-Heusler compounds
The carrier concentration in the p-type half-Heusler compound Ti0.3Zr0.35Hf0.35CoSb1−xSnx was optimized, which is a fundamental approach to enhance the performance of thermoelectric materials. The optimum carrier concentration is reached with a substitution level x = 0.15 of Sn, which yields the maximum power factor, 2.69 × 10−3 W m−1 K−2, and the maximum ZT = 0.8. This is an enhancement of about 40% in the power factor and the figure of merit compared to samples with x = 0.2. To achieve low thermal conductivities in half-Heusler compounds, intrinsic phase separation is an important key point. The present work addresses the influence of different preparation procedures on the quality and re…
Structure determination of thin CoFe films by anomalous x-ray diffraction
This work reports on the investigation of structure-property relationships in thin CoFe films grown on MgO. Because of the very similar scattering factors of Fe and Co, it is not possible to distinguish the random A2 (W-type) structure from the ordered B2 (CsCl-type) structure with commonly used x-ray sources. Synchrotron radiation based anomalous x-ray diffraction overcomes this problem. It is shown that as grown thin films and 300 K post annealed films exhibit the A2 structure with a random distribution of Co and Fe. In contrast, films annealed at 400 K adopt the ordered B2 structure.
Electronic properties of Co2MnSi thin films studied by hard x-ray photoelectron spectroscopy
This work reports on the electronic properties of thin films of the Heusler compound Co2MnSi studied by means of hard x-ray photoelectron spectroscopy (HAXPES). The results of photoelectron spectroscopy from multilayered thin films excited by photons of 2?8?keV are presented. The measurements were performed on (substrate/buffer layer/Co2MnSi(z)/capping layer) multilayers with a thickness z ranging from 0 to 50?nm. It is shown that high energy spectroscopy is a valuable tool for non-destructive depth profiling. The experimentally determined values of the inelastic electron mean free path in Co2MnSi increase from about 19.5 to 67?? on increasing the kinetic energy from about 1.9 to 6.8?keV. T…
Spin Polarimetry and Magnetic Dichroism on a Buried Magnetic Layer Using Hard X-ray Photoelectron Spectroscopy
The spin-resolved electronic structure of buried magnetic layers is studied by hard X-ray photoelectron spectroscopy (HAXPES) using a spin polarimeter in combination with a high-energy hemispherical electron analyzer at the high-brilliance BL47XU beamline (SPring-8, Japan). Spin-resolved photoelectron spectra are analyzed in comparison with the results of magnetic linear and circular dichroism in photoelectron emission in the case of buried Co2FeAl0.5Si0.5 layers. The relatively large inelastic mean free path (up to 20 nm) of fast photoelectrons enables us to extend the HAXPES technique with electron-spin polarimetry and to develop spin analysis techniques for buried magnetic multilayers a…
Improving thermoelectric performance of TiNiSn by mixing MnNiSb in the half-Heusler structure
The thermoelectric properties of n type semiconductor, TiNiSn is optimized by partial substitution with metallic, MnNiSb in the half Heusler structure. Herein, we study the transport properties and intrinsic phase separation in the system. The Ti1-xMnxNiSn1-xSbx alloys were prepared by arc-melting and were annealed at temperatures obtained from differential thermal analysis and differential scanning calorimetry results. The phases were characterized using powder X-ray diffraction patterns, energy dispersive X-ray spectroscopy, and differential scanning calorimetry. After annealing the majority phase was TiNiSn with some Ni rich sites and the minority phases was majorly Ti6Sn5, Sn, and MnSn2…
Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compound Mn1.5FeV0.5Al
The Slater-Pauling rule states that L21 Heusler compounds with 24 valence electrons do never exhibit a total spin magnetic moment. In case of strongly localized magnetic moments at one of the atoms (here Mn) they will exhibit a fully compensated half-metallic ferrimagnetic state instead, in particular, when symmetry does not allow for antiferromagnetic order. With aid of magnetic and anomalous Hall effect measurements it is experimentally demonstrated that Mn1.5V0.5FeAl follows such a scenario. The ferrimagnetic state is tuned by the composition. A small residual magnetization, that arises due to a slight mismatch of the magnetic moments in the different sublattices results in a pronounced …
Magnetic dichroism in angular-resolved hard X-ray photoelectron spectroscopy from buried layers
This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard X-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co$_2$FeAl layer buried beneath the IrMn layer. A pronounced…
Long-term stability of phase-separated half-Heusler compounds
Half-Heusler (HH) compounds have shown high figure of merit up to 1.5. Here, we address the long-term stability of n- and p-type HH materials. For this purpose, we investigated HH materials based on the Ti0.3Zr0.35Hf0.35NiSn-system after 500 cycles (1700 h) from 373 to 873 K. Both compounds exhibit a maximum Seebeck coefficient of |α|≈ 210 μV K(-1) and a phase separation into two HH phases. The dendritic microstructure is temperature resistant and upon cycling the changes in the microstructure are so marginal that the low thermal conductivity values (κ4 W m(-1) K(-1)) could be maintained. Our results emphasize that phase-separated HH compounds are suitable low cost materials and can lead to…
Electronic structure and optical, mechanical, and transport properties of the pure, electron-doped, and hole-doped Heusler compound CoTiSb
The Heusler compound CoTiSb was synthesized and investigated theoretically and experimentally with respect to electronic structure and optical, mechanical, and vibrational properties. The optical properties were investigated in a wide spectral range from 10 meV to 6.5 eV and compared with ab initio calculations. The optical spectra confirm the semiconducting nature of CoTiSb, with a strong exciton absorption at 1.83 eV. The calculated phonon dispersion as well as elastic constants verify the mechanical stability of CoTiSb in the cubic $C{1}_{b}$ system. Furthermore, solid solution series of CoTi${}_{1\ensuremath{-}x}$${M}_{x}$Sb ($M=\text{Sc}$, V and $0\ensuremath{\leqslant}x\ensuremath{\le…
Magnetic dichroism in angle-resolved hard x-ray photoemission from buried layers
This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard x-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co${}_{2}$FeAl layer buried beneath the IrMn layer. A pronou…
A nondestructive analysis of the B diffusion in Ta–CoFeB–MgO–CoFeB–Ta magnetic tunnel junctions by hard x-ray photoemission
This work reports on hard x-ray photoelectron spectroscopy (HAXPES) of CoFeB based tunnel junctions. Aim is to explain the role of the boron diffusion for the observed improvement of the tunneling magnetoresistance ratio with increasing annealing temperature. The high bulk sensitivity of HAXPES was used as a nondestructive technique to analyze CoFeB–MgO–CoFeB magnetic tunnel junctions. The investigated samples were processed at different annealing temperatures from 523 to 923 K. Hard x-ray core level spectroscopy reveals an enforced diffusion of boron from the CoFeB into the adjacent Ta layer with increasing annealing temperature. The dependence of the tunneling magnetoresistance on the ann…
Seebeck coefficients of half-metallic ferromagnets
In this report the Co2 based Heusler compounds are discussed as potential materials for spin voltage generation. The compounds were synthesized by arcmelting and consequent annealing. Band structure calculations were performed and revealed the compounds to be half-metallic ferromagnets. Magnetometry was performed on the samples and the Curie temperatures and the magnetic moments were determined. The Seebeck coefficients were measured from low to ambient temperatures for all compounds. For selected compounds high temperature measurements up to 900 K were performed.
Long-Term Stability of (Ti/Zr/Hf)CoSb1−xSnxThermoelectric p-Type Half-Heusler Compounds Upon Thermal Cycling
The effect of thermal cycling upon the thermoelectric performance of state-of-the-art p-type half-Heusler materials was investigated and correlated with the impact on the structural properties. We simulated a heat treatment of the material similar to actual applications in the mid-temperature range, such as occurs during the energy conversion from an automotive exhaust pipe. We compared three different compositions based on the (Ti/Zr/Hf)CoSb1−xSnx system. The best and most reliable performance was achieved using Ti0.5Hf0.5CoSb0.85Sn0.15, which reached a maximum figure of merit ZT of 1.1 at 700 °C. The intrinsic phase separation and resulting microstructuring, which are responsible for the …
Thermoelectric properties of spark plasma sintered composites based on TiNiSn half-Heusler alloys
Half-Heusler (HH) and especially TiNiSn-based alloys have shown high potential as thermoelectric (TE) materials for power generation applications. The reported transport properties show, however, a significant spread of results, due mainly to the difficulty in fabricating single-phase HH samples in these multicomponent and multiphased systems. In particular, little attention has been paid to the influence of the various minority phases on the TE performance of these compounds. A clear understanding of these issues is mandatory for the design of improved and stable TE HH-based composites. This study examines the structural and compositional influence of the residual metallic (Sn) and interme…
Influence of nanoscale order–disorder transitions on the magnetic properties of Heusler compounds for spintronics
Modifications in nanoscale chemical order are used to tune the magnetic properties, namely T-C, of Co2FeSixAl1-x (0 < x < 1). High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with Z-contrast reveals nanoscale regions of L2(1) order within a B2 matrix in the off-stoichiometry samples. Perhaps surprisingly, the latter, more chemically disordered structure, exhibits a higher T-C. Upon annealing, the off-stoichiometry samples become more homogeneous with the fraction of L2(1) order decreasing. The short-range order was also investigated using X-ray absorption fine structure (XAFS) measurements at the Co and Fe K edges. Since the local atomic environments of C…
Development of hard x-ray photoelectron SPLEED-based spectrometer applicable for probing of buried magnetic layer valence states
Abstract A novel design of high-voltage compatible polarimeter for spin-resolved hard X-ray photoelectron spectroscopy (Spin-HAXPES) went into operation at beamline BL09XU of SPring-8 in Hyogo, Japan. The detector is based on the well-established principle of electron diffraction from a W(001) single-crystal at a scattering energy of 103.5 eV. It's special feature is that it can be operated at a high negative bias potential up to 10 kV, necessary to access the HAXPES range. The polarimeter is operated behind a large hemispherical analyzer (Scienta R-4000). It was optimized for high transmission of the transfer optics. A delay-line detector (20 mm dia.) is positioned at the exit plane of the…