6533b7dbfe1ef96bd127132b

RESEARCH PRODUCT

Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compoundMn1.5FeV0.5Al

Tetsuya NakamuraClaudia FelserRolf StinshoffYurii SkourskiAjaya K. NayakBenjamin BalkeSiham OuardiGerhard H. Fecher

subject

PhysicsCondensed matter physicsMagnetic momentOrder (ring theory)02 engineering and technologyElectronic structureengineering.material021001 nanoscience & nanotechnologyHeusler compound01 natural sciencesSpin magnetic momentCondensed Matter::Materials ScienceFerrimagnetismHall effect0103 physical sciencesengineeringAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technology

description

The Slater-Pauling rule states that $L{2}_{1}$ Heusler compounds with 24 valence electrons never exhibit a total spin magnetic moment. In the case of strongly localized magnetic moments at one of the atoms (here Mn) they will exhibit a fully compensated half-metallic ferrimagnetic state instead, in particular, when symmetry does not allow for antiferromagnetic order. With the aid of magnetic and anomalous Hall effect measurements, it is experimentally demonstrated that ${\mathrm{Mn}}_{1.5}{\mathrm{V}}_{0.5}\mathrm{FeAl}$ follows such a scenario. The ferrimagnetic state is tuned by the composition. A small residual magnetization, which arises due to a slight mismatch of the magnetic moments in the different sublattices, results in a pronounced change of the temperature dependence of the ferrimagnet. A compensation point is confirmed by observation of magnetic reversal and sign change of the anomalous Hall effect. Theoretical models are presented that correlate the electronic structure and the compensation mechanisms of the different half-metallic ferrimagnetic states in the Mn-V-Fe-Al Heusler system.

https://doi.org/10.1103/physrevb.95.060410