0000000000006098
AUTHOR
Benjamin Balke
Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations of module design
Within the last decade, novel materials concepts and nanotechnology have resulted in a great increase of the conversion efficiency of thermoelectric materials. Despite this, a mass market for thermoelectric heat-to-electricity conversion is yet to be opened up. One reason for this is that the transfer of the lab records into fabrication techniques which enable thermoelectric generator modules is very challenging. By closing the gap between record lab values and modules, broad industrial applications may become feasible. In this review, we compare three classes of materials, all designed for medium-high to high temperature applications in the field of waste heat recovery: skutterudites, half…
Dysprosium-Based Ionic Liquid Crystals: Thermal, Structural, Photo- and Magnetophysical Properties
[C12mim]3[DyBr6] (C12mim = 1-dodecyl-3-methylimidazolium) represents a new material with interesting luminescent behavior as well as mesomorphic and magnetic properties. The compound was found to show thermotropic liquid crystalline behavior and forms smectic mesophases which were investigated by hot-stage polarizing optical microscopy and differential scanning calorimetry. The emission color of [C12mim]3[DyBr6] can be tuned from white to orange-yellow by the choice of the excitation wavelength. Sample excitation with λex = 366 nm leads to the blue-whitish luminescence from the imidazolium cation itself. With λex = 254 nm the common Dy(III) emission is observed which mainly arises from the …
Symmetry of valence states of Heusler compounds explored by linear dichroism in hard-x-ray photoelectron spectroscopy.
This study reports on the linear dichroism in angular-resolved photoemission from the valence band of the Heusler compounds ${\mathrm{NiTi}}_{0.9}{\mathrm{Sc}}_{0.1}\mathrm{Sn}$ and NiMnSb. High-resolution photoelectron spectroscopy was performed with an excitation energy of $h\ensuremath{\nu}=7.938\text{ }\text{ }\mathrm{keV}$. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. The valence band spectra exhibit the typical structure expected from first-principles calculations of the electronic structure of these compounds. Noticeable linear dichroism is found in the valence band of both materials, and this allows for a symmetry analysis of the cont…
Hard x-ray photoelectron spectroscopy of buried Heusler compounds
This work reports on high energy photoelectron spectroscopy from the valence band of buried Heusler thin films (Co2MnSi and Co2FeAl0.5Si0.5) excited by photons of about 6?keV energy. The measurements were performed on thin films covered by MgO and SiOx with different thicknesses from 1 to 20?nm of the insulating layer and additional AlOx or Ru protective layers. It is shown that the insulating layer does not affect the high energy spectra of the Heusler compound close to the Fermi energy. The high resolution measurements of the valence band close to the Fermi energy indicate a very large electron mean free path of the electrons through the insulating layer. The spectra of the buried thin fi…
Anomalous transport properties of the half-metallic ferromagnets Co 2 TiSi, Co 2 TiGe and Co 2 TiSn
In this work the theoretical and experimental investigations of Co2TiZ (Z = Si, Ge, or Sn) compounds are reported. Half-metallic ferromagnetism is predicted for all three compounds with only two bands crossing the Fermi energy in the majority channel. The magnetic moments fulfill the Slater-Pauling rule and the Curie temperatures are well above room temperature. All compounds show a metallic like resistivity for low temperatures up to their Curie temperature, above the resistivity changes to semiconducting like behavior. A large negative magnetoresistance of 55% is observed for Co2TiSn at room temperature in an applied magnetic field of 4T which is comparable to the large negative magnetore…
Properties of the quaternary half-metal-type Heusler alloyCo2Mn1−xFexSi
This paper reports on the bulk properties of the quaternary Heusler alloy Co2Mn1�xFexSi with the Fe concentration x =0,1/2,1. All samples, which were prepared by arc melting, exhibit L21 long-range order over the complete range of Fe concentration. The structural and magnetic properties of the Co2Mn1�xFexSi Heusler alloys were investigated by means of x-ray diffraction, high- and low-temperature magnetometry, Mossbauer spectroscopy, and differential scanning calorimetry. The electronic structure was explored by means of highenergy photoemission spectroscopy at about 8 keV photon energy. This ensures true bulk sensitivity of the measurements. The magnetization of the Fe-doped Heusler alloys …
Nanosession: Advanced Spectroscopy and Scattering
Thermomagnetic Materials: Thermomagnetic Properties Improved by Self-Organized Flower-Like Phase Separation of Ferromagnetic Co2Dy0.5Mn0.5Sn (Adv. Funct. Mater. 9/2012)
High energy, high resolution photoelectron spectroscopy of Co2Mn(1-x)Fe(x)Si
This work reports on high resolution photoelectron spectroscopy for the valence band of Co2Mn(1-x)Fe(x)Si (x=0,0.5,1) excited by photons of about 8 keV energy. The measurements show a good agreement to calculations of the electronic structure using the LDA+U scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared to low energy XPS spectra. The high resolution measurements of the valence band close to the Fermi energy indicate the existence of the gap in the minority states for all three alloys.
Thermoelectric properties of CoTiSb based compounds
Several CoTiSb based compounds were synthesized and investigated on their thermoelectric properties. The aim was to improve the thermoelectric properties of CoTiSb by the systematic substitution of atoms or the introduction of additional Co into the vacant sublattice. The solid solutions Co1+xTiSb, Co1?yCuyTiSb and CoTiSb1?zBiz were synthesized. X-ray diffraction was used to investigate the crystal structure. The resistivity, the Seebeck coefficient and the thermal conductivity were determined for all compounds in the temperature range from 2 to 400?K. The highest figure of merit for each solid solution is presented. We were able to improve the figure of merit by a factor of approximately s…
Half-metallic compensated ferrimagnetism with a tunable compensation point over a wide temperature range in the Mn-Fe-V-Al Heusler system
The cubic Heusler compound Mn1.5FeV0.5Al with the L21 Heusler structure is the first fully compensated half-metallic ferrimagnet with 24 valence electrons. The ferrimagnetic state can be tuned by changing the composition such that the compensation point appears at finite temperatures ranging from 0 K up to 226 K, while retaining half-metallicity in the system. In this paper, the structural, magnetic and transport properties of the Mn-Fe-V-Al system are discussed. Magnetic reversal and a change of sign of the anomalous Hall effect were observed at the compensation point, which gives rise to a sublattice spin-crossing. These materials present new possibilities for potential spintronic devices…
Multi-temperature synchrotron PXRD and physical properties study of half-Heusler TiCoSb.
Phase pure samples of the half-Heusler material TiCoSb were synthesised and investigated. Multi-temperature synchrotron powder X-ray diffraction (PXRD) data measured between 90 and 1000 K in atmospheric air confirm the phase purity, but they also reveal a decomposition reaction starting at around 750 K. This affects the high temperature properties since TiCoSb is semiconducting, whereas CoSb is metallic. Between 90 K and 300 K the linear thermal expansion coefficient is estimated to be 10.5 × 10(-6) K(-1), while it is 8.49 10(-6) K(-1) between 550 K and 1000 K. A fit of a Debye model to the Atomic Displacement Parameters obtained from Rietveld refinement of the PXRD data gives a Debye tempe…
Quaternary Heusler Compounds without Inversion Symmetry: CoFe 1+ x Ti 1– x Al and CoMn 1+ x V 1– x Al
We report the quaternary Heusler compound derivatives CoFe1+xTi1–xAl and CoMn1+xV1–xAl, which do not have centers of inversion. Classical T2T′M (T, T′ = transition metal, M = main group element) Heusler compounds (prototype: Cu2MnAl) crystallize in the L21 structure, space group Fmm (225) that exhibits a center of inversion. Replacing one of the T2 atoms by another transition element (T″) results in a quaternary TT′T″M compound with F3m symmetry (Y; structure type LiMgPdSn) without center of inversion. In the case of “quasi closed shell” compounds with 24 valence electrons in the primitive cell, one expects the absence of ferromagnetism according to the Slater–Pauling rule. Increasing the n…
Effect of Charge Transfer in Magnetic-Plasmonic Au@MOx (M = Mn, Fe) Heterodimers on the Kinetics of Nanocrystal Formation
Heteronanoparticles represent a new class of nanomaterials exhibiting multifunctional and collective properties, which could find applications in medical imaging and therapy, catalysis, photovoltaics, and electronics. This present work demonstrates the intrinsic heteroepitaxial linkage in heterodimer nanoparticles to enable interaction of the individual components across their interface. It revealed distinct differences between Au@MnO and Au@Fe3O4 regarding the synthetic procedure and growth kinetics, as well as the properties to be altered by the variation of the electronic structure of the metal oxides. The chemically related metal oxides differ concerning their band gap; while MnO is a M…
Itinerant half-metallic ferromagnetsCo2TiZ(Z=Si, Ge, Sn):Ab initiocalculations and measurement of the electronic structure and transport properties
This work reports on ab initio calculations and experiments on the half-metallic ferromagnetic Heusler compounds ${\text{Co}}_{2}\text{Ti}Z$ $(Z=\text{Si},\text{ }\text{Ge},\text{ }\text{Sn})$. Aim is a comprehensive study of the electronic-structure and thermoelectric properties. The impact of the variation in the main group element $Z$ on those properties is discussed. X-ray diffraction was performed on the compounds and the lattice parameters are compared to other ${\text{Co}}_{2}$-based compounds. Hard x-ray photoemission measurements were carried out and the results are compared to the calculated electronic structure. The experimentally determined electronic structure, magnetic propert…
Interface magnetization of ultrathin epitaxial Co2FeSi(110)/Al2O3films
Element-specific magnetic properties of ultrathin epitaxial Co2FeSi(110) films were measured using x-ray magnetic circular dichroism (XMCD). The epitaxial Heusler films were grown by RF magnetron sputtering on substrates. The magnetization of thicker films as determined by XMCD is smaller than expected for a half-metallic material. In addition, the magnetization decreases considerably for films thinner than 10 nm. The thickness dependence of the magnetic moment can be described by introducing a certain number of dead layers representing a deficiency of magnetization at the interfaces. Quantitative evaluation results in a dead layer thickness of 0.8 nm at room temperature, consisting of a te…
Dysprosium room-temperature ionic liquids with strong luminescence and response to magnetic fields.
Facile hybridization of Ni@Fe2O3 superparticles with functionalized reduced graphene oxide and its application as anode material in lithium-ion batteries
Abstract In our present work we developed a novel graphene wrapping approach of Ni@Fe2O3 superparticles, which can be extended as a concept approach for other nanomaterials as well. It uses sulfonated reduced graphene oxide, but avoids thermal treatments and use of toxic agents like hydrazine for its reduction. The modification of graphene oxide is achieved by the introduction of sulfate groups accompanied with reduction and elimination reactions, due to the treatment with oleum. The successful wrapping of nanoparticles is proven by energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy and Raman spectroscopy. The developed composite material shows strongly i…
Hole localization in thermoelectric half-Heusler (Zr0.5Hf0.5)Co(Sb1−xSn ) thin films
Abstract The (Ti, Zr, Hf)Co(Sb 1 − x Snx) material class has recently come into focus as an attractive p-type high-temperature thermoelectric material. This study experimentally demonstrates that homogeneous, highly textured (Zr0.5Hf0.5)Co(Sb 1 − x Snx) thin films can be grown on single crystalline MgO. By varying the sputter power, samples with both positive and negative Seebeck coefficient can be grown. The underlying reason for the sign change is the segregation of Sn nano-inclusions, which lower the effective doping of the half-Heusler matrix. Similarly the Hall constant also switches sign at low temperatures, which is modeled assuming semi-metal behavior and low temperature hole locali…
Thermoeletric Heusler Compounds
Thermoelectric converters for power generation aim at reducing CO\(_2\) emission via the conversion of a part of the low-grade waste heat generated by engines, industrial furnaces, gas pipes, etc. to electricity. The recovery of waste heat from the exhaust of an automotive engine, in particular, is an attractive, albeit not very efficient way for reduction of fuel consumption. Thermoelectric converters with high overall efficiency convert heat directly into electricity without moving parts and, thus, not only decrease our reliance on fossil fuels but also actively counteract global warming. State-of-the-art converters are simply too inefficient to be economic, partly due to expensive elemen…
Direct observation of half-metallicity in the Heusler compound $Co_{2}MnSi$
Ferromagnetic thin films of Heusler compounds are highly relevant for spintronic applications owing to their predicted half-metallicity, that is, 100% spin polarization at the Fermi energy. However, experimental evidence for this property is scarce. Here we investigate epitaxial thin films of the compound Co2MnSi in situ by ultraviolet-photoemission spectroscopy, taking advantage of a novel multi-channel spin filter. By this surface sensitive method, an exceptionally large spin polarization of () % at room temperature is observed directly. As a more bulk sensitive method, additional ex situ spin-integrated high energy X-ray photoemission spectroscopy experiments are performed. All experimen…
Correlation of local disorder and electronic properties in the Heusler alloy Co2Cr0.6Fe0.4Al
For the fully ordered Heusler alloy Co2Cr0.6Fe0.4Al half-metallic ferromagnetism has been predicted. Local disorder other than the Al–Cr/Fe (B2)-type disorder is known to destroy the half-metallic bandgap. The usage of appropriate buffer layers improves the structural quality of thin films. We correlate the structural properties of thin magnetron sputtered films determined by x-ray diffraction with details of the x-ray magnetic circular dichroism spectra. From the value of the magnetic moment located at the Cr atom and features of the Co absorption spectra we conclude that the buffer layers lead also to an improvement in the local atomic order. The atomic ordering gradually approaches the l…
Charge transfer effects on the chemical reactivity of PdxCu1−xnanoalloys
This work reports on the synthesis and characterization of PdxCu1-x (x = 0.7, 0.5 and 0.3) nanoalloys obtained via an eco-friendly chemical reduction method based on ascorbic acid and trisodium citrate. The average size of the quasi-spherical nanoparticles (NPs) obtained by this method was about 4 nm, as observed by TEM. The colloids containing different NPs were then supported on carbon in order to produce powder samples (PdxCu1-x/C) whose electronic and structural properties were probed by different techniques. XRD analysis indicated the formation of crystalline PdCu alloys with a nanoscaled crystallite size. Core-level XPS results provided a fingerprint of a charge transfer process betwe…
Disentangling the Mn moments on different sublattices in the half-metallic ferrimagnet Mn3−xCoxGa
Ferrimagnetic Mn3−xCoxGa compounds have been investigated by magnetic circular dichroism in x-ray absorption (XMCD). Compounds with x>0.5 crystallize in the CuHg2Ti structure. A tetragonal distortion of the cubic structure occurs for x≤0.5. For the cubic phase, magnetometry reveals a linearly increasing magnetization of 2x Bohr magnetons per formula unit obeying the generalized Slater–Pauling rule. XMCD confirms the ferrimagnetic character with Mn atoms occupying two different sublattices with antiparallel spin orientation and different degrees of spin localization and identifies the region 0.6<x≤0.8 as most promising for a high spin polarization at the Fermi level. Individual Mn moments on…
Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compoundMn1.5FeV0.5Al
The Slater-Pauling rule states that $L{2}_{1}$ Heusler compounds with 24 valence electrons never exhibit a total spin magnetic moment. In the case of strongly localized magnetic moments at one of the atoms (here Mn) they will exhibit a fully compensated half-metallic ferrimagnetic state instead, in particular, when symmetry does not allow for antiferromagnetic order. With the aid of magnetic and anomalous Hall effect measurements, it is experimentally demonstrated that ${\mathrm{Mn}}_{1.5}{\mathrm{V}}_{0.5}\mathrm{FeAl}$ follows such a scenario. The ferrimagnetic state is tuned by the composition. A small residual magnetization, which arises due to a slight mismatch of the magnetic moments …
Segmented Thermoelectric Oxide-Based Module for High-Temperature Waste Heat Harvesting
We report a high-performance thermoelectric (TE) oxide-based module using the segmentation of half-Heusler Ti_(0.3)Zr_(0.35)Hf_(0.35)CoSb_(0.8)Sn_(0.2) and misfit-layered cobaltite Ca_3Co_4O_(9+δ) as the p-leg and 2 % Al-doped ZnO as the n-leg. The maximum output power of a 4-couple segmented module at ΔT=700 K attains a value of approximately 6.5 kW m^(−2), which is three times higher than that of the best reported non-segmented oxide module. The TE properties of individual legs, as well as the interfacial contact resistances, were characterized as a function of temperature. Numerical modeling was used to predict the efficiency and to evaluate the influence of the electrical and thermal lo…
Tailoring of the electrical and thermal properties using ultra-short period non-symmetric superlattices
Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSn)���:(HfNiSn)���������, and 0 ��� n ��� 6 unit cells. The thermal conductivity (��) showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit ZT was achieved for n = 4. The measured �� can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistanc…
The half-metallic ferromagnet
Abstract Electronic structure calculation were used to predict a new material for spintronic applications. Co 2 Mn 0.5 Fe 0.5 Si is one example which is stable against on-site correlation and disorder effects due to the position of the Fermi energy in the middle of the minority band gap. Experimentally the sample were made exhibiting L 2 1 structure and a high magnetic order.
Crystal Structure of New Heusler Compounds
Heusler compounds are promising materials in many fields of contemporary research. The spectrum of their possible applications ranges from magnetic and magneto-mechanical materials over semiconductors and thermoelectrics to superconductors. An important feature of the Heusler compounds is the possibility of controlling the valence electron concentration by partial substitution of elements. On the other hand, the properties also depend on the degree of ordering of the the crystal structure. In general, Heusler compounds crystallize in the Cu2MnAl-type structure but in many cases certain types of disorder are observed. In this paper a detailed description of the different types of disordered …
Electronic transport properties of electron- and hole-doped semiconductingC1bHeusler compounds:NiTi1−xMxSn(M=Sc,V)
The substitutional series of Heusler compounds ${\text{NiTi}}_{1\ensuremath{-}x}{M}_{x}\text{Sn}$ (where $M=\text{Sc},\text{V}$ and $0lx\ensuremath{\le}0.2$) were synthesized and investigated with respect to their electronic structure and transport properties. The results show the possibility to create $n$-type and $p$-type thermoelectrics within one Heusler compound. The electronic structure and transport properties were calculated by all-electron ab initio methods and compared to the measurements. Hard x-ray photoelectron spectroscopy was carried out and the results are compared to the calculated electronic structure. Pure NiTiSn exhibits massive ``in gap'' states containing about 0.1 ele…
Thermal stability and enhanced thermoelectric properties of the tetragonal tungsten bronzes Nb8-xW9+xO47 (0 <x <5)
Thermoelectric materials are believed to play a fundamental role in the energy field over the next years thanks to their ability of directly converting heat into usable electric energy. To increase their integration in the commercial markets, improvements of the efficiencies are needed. At the same time, cheap and non-toxic materials are required along with easily upscalable production cycles. Compounds of the tetragonal tungsten bronze (TTB) series Nb8-xW9+xO47 fulfill all these requirements and are promising materials. Their adaptive structure ensures glass-like values of the thermal conductivity, and the substitution on the cation side allows a controlled manipulation of the electronic p…
Spin-resolved low-energy and hard x-ray photoelectron spectroscopy of off-stoichiometric Co2MnSi Heusler thin films exhibiting a record TMR
Half-metallic Co2MnSi-based Heusler compounds have attracted attention because they yield very high tunnelling magnetoresistance (TMR) ratios. Record TMR ratios of 1995% (at 4.2 K) are obtained from off-stoichiometric Co2MnSi-based magnetic tunnel junctions. This work reports on a combination of band structure calculations and spin-resolved and photon-polarisation-dependent photoelectron spectroscopy for off-stoichiometric Heusler thin films with the composition Co2Mn1.30Si0.84. Co and Mn are probed by magnetic dichroism in angle-resolved photoelectron spectroscopy at the 2p core level. In contrast to the delocalised Co 3d states, a pronounced localisation of the Mn 3d states is deduced fro…
Electronic and crystallographic structure, hard x-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co2MnGe
This work reports on the electronic and crystalline structure and the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co${}_{2}$MnGe. The crystalline structure was examined in detail by extended x-ray absorption fine-structure spectroscopy and anomalous x-ray diffraction. The compound exhibits a well-ordered $L{2}_{1}$ structure as is typical for Heusler compounds with 2:1:1 stoichiometry. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab initiocalculations. Transport measurements and hard x-ray photoelectron spectroscopy were performed t…
Structural, electronic, and magnetic properties of tetragonalMn3−xGa: Experiments and first-principles calculations
This work reports on the electronic, magnetic, and structural properties of the binary intermetallic compounds ${\mathrm{Mn}}_{3\ensuremath{-}x}\mathrm{Ga}$. The tetragonal ${\mathrm{DO}}_{22}$ phase of the ${\mathrm{Mn}}_{3\ensuremath{-}x}\mathrm{Ga}$ series, with $x$ varying from 0 to 1.0 in steps of $x=0.1$, was successfully synthesized and investigated. It was found that all these materials are hard magnetic, with energy products ranging from $10.1\phantom{\rule{0.3em}{0ex}}\mathrm{kJ}\phantom{\rule{0.2em}{0ex}}{\mathrm{m}}^{\ensuremath{-}3}$ for low Mn content $(x\ensuremath{\rightarrow}1)$ to $61.6\phantom{\rule{0.3em}{0ex}}\mathrm{kJ}\phantom{\rule{0.2em}{0ex}}{\mathrm{m}}^{\ensurema…
Phase separation as a key to a thermoelectric high efficiency
This work elucidates the possible reasons for the outstanding, but never reproduced thermoelectric properties of the doped Ti(0.5)Zr(0.25)Hf(0.25)NiSn Heusler compounds. The structural investigations done via synchrotron X-ray diffraction measurements and scanning electron microscope measurements, which clearly show that the microstructure consists of three temperature stable C1(b) phases with possible semi-coherent interfaces, are presented. The exceptional thermoelectric properties are due to this intrinsic phase separation. It is possible to reproduce the high Figure of Merit values with ZT = 1.2 at 830 K. Furthermore, the influence of doping different elements on the Sn position in this…
Half-Heusler compounds: novel materials for energy and spintronic applications
Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as future energy applications and for spintronics. The semiconducting Heusler compounds can be identified by the number of valence electrons. The band gap can be tuned between 0 and 4 eV by the electronegativity difference of the constituents. Magnetism can be introduced in these compounds by using rare-earth elements, manganese or ‘electron’ doping. Thus, there is a great interest in the fields of thermoelectrics, solar cells and diluted magnetic semiconductors. The combination of different properties such as superconductivity and topological edge states leads to new multifunct…
Highly Efficient Thermoelectric Heusler Materials
Charge transfer and tunable minority band gap at the Fermi energy of a quaternaryCo2(MnxTi1−x)GeHeusler alloy
We investigate the distribution of element-specific magnetic moments and changes in the spin-resolved unoccupied density of states in a series of half-metallic ${\text{Co}}_{2}({\text{Mn}}_{x}{\text{Ti}}_{1\ensuremath{-}x})\text{Ge}$ Heusler alloys using x-ray magnetic circular dichroism. The Co and Mn magnetic moments are oriented parallel while a small Ti moment shows antiparallel to the mean magnetization. The element-specific magnetic moments remain almost independent on the composition. Therefore, a replacement of Ti by Mn results in an increase in magnetization. The increase in magnetization with increasing $x$ follows the Slater-Pauling rule. The Fermi level decreases with respect to…
Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation
A novel approach for optimization of the thermoelectric properties of p-type Heusler compounds with a C1b structure was investigated. A successful recipe for achieving intrinsic phase separation in the n-type material based on the TiNiSn system is isoelectronic partial substitution of Ti with its heavier homologues Zr and Hf. We applied this concept to the p-type system MCoSb0.8Sn0.2 by a systematic investigation of samples with different compositions at the Ti position (M = Ti, Zr, Hf, Ti0.5Zr0.5, Zr0.5Hf0.5, and Ti0.5Hf0.5). We thus achieved an approximately 40% reduction of the thermal conductivity and a maximum figure of merit ZT of 0.9 at 700 °C. This is a 80% improvement in peak ZT fr…
Half-Heusler superlattices as model systems for nanostructured thermoelectrics
The efficiency of thermoelectric materials is directly related to the dimensionless figure of merit , therefore, one of the means to improve ZT is to reduce the thermal conductivity. Our research focuses on half-Heusler superlattices (SLs) and the relationship between the SL period and the thermal conductivity. The cross-plane thermal conductivity of DC-sputtered TiNiSn/HfNiSn SLs was measured by the 3 method at room temperature and a clear reduction of was achieved for all SL periods, in particular for periods smaller than 20 nm. Moreover, the thermal conductivities of TiNiSn and HfNiSn single films display reduced values compared to the literature data for bulk materials. Furthermore, we …
Probing the electronic states of high-TMR off-stoichiometric Co2MnSi thin films by hard x-ray photoelectron spectroscopy
The tunnel magnetoresistance ratio (TMR) of fully epitaxial magnetic tunnel junctions with an off-stoichiometric Co${}_{2}$MnSi Heusler alloy has been shown to exhibit a systematic dependence on Mn content, reaching 1135% at 4.2 K for Co${}_{2}$Mn${}_{1.29}$Si. In this paper, we explain the behavior of the observed TMR ratio using ab initio calculations and hard x-ray photoelectron spectroscopy (HAXPES). For the Mn-deficient samples, we show that the the drop of the TMR is caused by Co antisite atoms, which impose extra states into the minority-spin band gap. On the other hand, Mn-excess composition shows nearly half-metallic behavior. This result can be intuitively understood since both Co…
Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds
Nowadays, a wealth of information on ultrafast magnetization dynamics of thin ferromagnetic films exists in the literature. Information is, however, scarce on bulk single crystals, which may be especially important for the case of multi-sublattice systems. In Heusler compounds, representing prominent examples for such multi-sublattice systems, off-stoichiometry and degree of order can significantly change the magnetic properties of thin films, while bulk single crystals may be generally produced with a much more well-defined stoichiometry and a higher degree of ordering. A careful characterization of the local structure of thin films versus bulk single crystals combined with ultrafast demag…
Fine tuning of thermoelectric performance in phase-separated half-Heusler compounds
Two successful recipes to enhance the thermoelectric performance, namely carrier concentration optimization and reduction of thermal conductivity, have been combined and applied to the p-type (Ti/Zr/Hf)CoSb1−xSnx system. An intrinsic micrometer-scale phase separation increases the phonon scattering and reduces the lattice thermal conductivity. A substitution of 15% Sb by Sn optimizes the electronic properties. Starting from this, further improvement of the thermoelectric properties has been achieved by a fine tuning of the Ti to Hf ratio. The microstructuring of the samples was studied in detail with high-resolution synchrotron powder X-ray diffraction and element mapping electron microscop…
Thermomagnetic Properties Improved by Self-Organized Flower-Like Phase Separation of Ferromagnetic Co2Dy0.5Mn0.5Sn
A thermodynamically stable phase separation of Co2Dy0.5Mn0.5Sn into the Heusler compound Co2MnSn and Co8Dy3Sn4 is induced by rapid cooling from the liquid phase. The phase separation forms an ordered flower-like structure on the microscale. The increased scattering of phonons at the phase boundaries reduces the thermal conductivity and thus improves thermoelectric and spincaloric properties.
Probing bulk electronic structure with hard X-ray angle-resolved photoemission.
Traditional ultraviolet/soft X-ray angle-resolved photoemission spectroscopy (ARPES) may in some cases be too strongly influenced by surface effects to be a useful probe of bulk electronic structure. Going to hard X-ray photon energies and thus larger electron inelastic mean-free paths should provide a more accurate picture of bulk electronic structure. We present experimental data for hard X-ray ARPES (HARPES) at energies of 3.2 and 6.0 keV. The systems discussed are W, as a model transition-metal system to illustrate basic principles, and GaAs, as a technologically-relevant material to illustrate the potential broad applicability of this new technique. We have investigated the effects of …
On the half-metallicity of Co2FeSi Heusler alloy: Point-contact Andreev reflection spectroscopy andab initiostudy
Co2FeSi, a Heusler alloy with the highest magnetic moment per unit cell and the highest Curie temperature, has largely been described theoretically as a half-metal. This conclusion, however, disagrees with point contact Andreev reflection (PCAR) spectroscopy measurements, which give much lower values of spin polarization, P. Here, we present the spin polarization measurements of Co2FeSi by the PCAR technique, along with a thorough computational exploration, within the DFT and a GGA+U approach, of the Coulomb exchange U parameters for Co and Fe atoms, taking into account spin-orbit coupling. We find that the orbital contribution (mo) to the total magnetic moment (mT) is significant, since it…
Charge carrier concentration optimization of thermoelectric p-type half-Heusler compounds
The carrier concentration in the p-type half-Heusler compound Ti0.3Zr0.35Hf0.35CoSb1−xSnx was optimized, which is a fundamental approach to enhance the performance of thermoelectric materials. The optimum carrier concentration is reached with a substitution level x = 0.15 of Sn, which yields the maximum power factor, 2.69 × 10−3 W m−1 K−2, and the maximum ZT = 0.8. This is an enhancement of about 40% in the power factor and the figure of merit compared to samples with x = 0.2. To achieve low thermal conductivities in half-Heusler compounds, intrinsic phase separation is an important key point. The present work addresses the influence of different preparation procedures on the quality and re…
Electronic properties of Co2MnSi thin films studied by hard x-ray photoelectron spectroscopy
This work reports on the electronic properties of thin films of the Heusler compound Co2MnSi studied by means of hard x-ray photoelectron spectroscopy (HAXPES). The results of photoelectron spectroscopy from multilayered thin films excited by photons of 2?8?keV are presented. The measurements were performed on (substrate/buffer layer/Co2MnSi(z)/capping layer) multilayers with a thickness z ranging from 0 to 50?nm. It is shown that high energy spectroscopy is a valuable tool for non-destructive depth profiling. The experimentally determined values of the inelastic electron mean free path in Co2MnSi increase from about 19.5 to 67?? on increasing the kinetic energy from about 1.9 to 6.8?keV. T…
Long-term stability of phase-separated Half-Heusler compounds
Half-Heusler (HH) compounds have shown high Figure of merits up to 1.5. The key to these high thermoelectric efficiencies is an intrinsic phase separation, which occurs in multicomponent Half-Heusler compounds and leads to an significantly reduction of the thermal conductivity. For commercial applications, compatible n- and p-type materials are essential and their thermal stability under operating conditions, e.g. for an automotive up to 873 K, needs to be guaranteed. For the first time, the long-term stability of n- and p-type HH materials is proved. We investigated HH materials based on the Ti0.3Zr0.35Hf0.35NiSn-system after 500 cycles (1700 h) from 373 to 873 K. Both compounds exhibit a …
Improving thermoelectric performance of TiNiSn by mixing MnNiSb in the half-Heusler structure
The thermoelectric properties of n type semiconductor, TiNiSn is optimized by partial substitution with metallic, MnNiSb in the half Heusler structure. Herein, we study the transport properties and intrinsic phase separation in the system. The Ti1-xMnxNiSn1-xSbx alloys were prepared by arc-melting and were annealed at temperatures obtained from differential thermal analysis and differential scanning calorimetry results. The phases were characterized using powder X-ray diffraction patterns, energy dispersive X-ray spectroscopy, and differential scanning calorimetry. After annealing the majority phase was TiNiSn with some Ni rich sites and the minority phases was majorly Ti6Sn5, Sn, and MnSn2…
New Heusler Compounds and Their Properties
Spintronics is a multidisciplinary field and a new research area. New materials must be found for satisfying the different types of requirement. The search for stable half-metallic ferromagnets and ferromagnetic semiconductors with Curie temperatures higher than room temperature is still a challenge for solid state scientists. A general understanding of how structures are related to properties is a necessary prerequisite for material design. Computational simulations are an important tool for a rational design of new materials. The new developments in this new field are reported from the point of view of material scientists.
Bulk sensitive photo emission spectroscopy of compounds
This work reports about bulk-sensitive, high energy photoelectron spectroscopy from the valence band of CoTiSb excited by photons from 1.2 to 5 keV energy. The high energy photoelectron spectra were taken at the KMC-1 high energy beamline of BESSY II employing the recently developed Phoibos 225 HV analyser. The measurements show a good agreement to calculations of the electronic structure using the LDA scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared to low energy XPS spectra.
Preparation of Heusler thin films: The quaternary alloy CO2Fe0.5Mn0.5Si
In this work the basic strategies for the preparation of CO2Mn0.5Fe0.5Si as an example for Heusler alloy thin films will be described. Texture and magnetic properties of these films will be discussed, especially with regard to different buffer layers and annealing temperatures. Finally, we will show the integration of Heusler thin films into magnetic tunnel junctions (MTJs) and calculate the effective spin polarization. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Spintronik: eine Herausforderung für Materialwissenschaften und Festkörperchemie
Spintronik ist ein multidisziplinares Forschungsfeld zwischen Physik, Material- und Ingenieurwissenschaften, aber auch ein neuer Forschungsbereich der Festkorperforschung. Fur die verschiedensten Anforderungen mussen unterschiedlichste Materialien gefunden werden. Die Suche nach ferromagnetischen Halbleitern und stabilen halbmetallischen Ferromagneten mit Curie-Temperaturen hoher als Raumtemperatur ist immer noch eine zentrale Aufgabe fur die Festkorperchemie. Ein allgemeines Verstandnis der Struktur-Eigenschafts-Beziehungen ist eine notwendige Voraussetzung fur das Design neuer Materialien. In diesem Aufsatz werden die wichtigsten Entwicklungen im Bereich der Spintronik aus der Perspektive…
Structural and magnetic properties of Fe2CoGa Heusler nanoparticles
Abstract Fe2CoGa Heusler nanoparticles are synthesized by a chemical method. The structure and magnetic properties of Fe2CoGa Heusler nanoparticles are investigated by x-ray diffraction, extended x-ray absorption fine structure and Mössbauer spectroscopy. The crystal structure of Fe2CoGa nanoparticles is described by the X-type structure (prototype: Li2AgSb). Magnetic measurements reveal the presence of small Fe2CoGa nanoparticles and lower magnetic moments compared with the theoretically predicted values.
Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compound Mn1.5FeV0.5Al
The Slater-Pauling rule states that L21 Heusler compounds with 24 valence electrons do never exhibit a total spin magnetic moment. In case of strongly localized magnetic moments at one of the atoms (here Mn) they will exhibit a fully compensated half-metallic ferrimagnetic state instead, in particular, when symmetry does not allow for antiferromagnetic order. With aid of magnetic and anomalous Hall effect measurements it is experimentally demonstrated that Mn1.5V0.5FeAl follows such a scenario. The ferrimagnetic state is tuned by the composition. A small residual magnetization, that arises due to a slight mismatch of the magnetic moments in the different sublattices results in a pronounced …
Magnetic dichroism in angular-resolved hard X-ray photoelectron spectroscopy from buried layers
This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard X-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co$_2$FeAl layer buried beneath the IrMn layer. A pronounced…
Long-term stability of phase-separated half-Heusler compounds
Half-Heusler (HH) compounds have shown high figure of merit up to 1.5. Here, we address the long-term stability of n- and p-type HH materials. For this purpose, we investigated HH materials based on the Ti0.3Zr0.35Hf0.35NiSn-system after 500 cycles (1700 h) from 373 to 873 K. Both compounds exhibit a maximum Seebeck coefficient of |α|≈ 210 μV K(-1) and a phase separation into two HH phases. The dendritic microstructure is temperature resistant and upon cycling the changes in the microstructure are so marginal that the low thermal conductivity values (κ4 W m(-1) K(-1)) could be maintained. Our results emphasize that phase-separated HH compounds are suitable low cost materials and can lead to…
Design Scheme of New Tetragonal Heusler Compounds for Spin-Transfer Torque Applications and its Experimental Realization
Band Jahn-Teller type structural instabilities of cubic Mn(2)YZ Heusler compounds causing tetragonal distortions can be predicted by ab initio band-structure calculations. This allows for identification of new Heusler materials with tunable magnetic and structural properties that can satisfy the demands for spintronic applications, such as in spin-transfer torque-based devices.
Tailoring the electronic structure of half-metallic Heusler alloys
We investigated element-specific magnetic moments and the spin-resolved unoccupied density of states (DOS) of polycrystalline ${\text{Co}}_{2}\text{Ti}Z$ $(Z=\text{Si},\text{ }\text{Ge},\text{ }\text{Sn},\text{ }\text{Sb})$, ${\text{Co}}_{2}{\text{Mn}}_{x}{\text{Ti}}_{1\ensuremath{-}x}\text{Si}$ and ${\text{Co}}_{2}{\text{MnGa}}_{1\ensuremath{-}x}{\text{Ge}}_{x}$ Heusler alloys using circular dichroism in x-ray absorption spectroscopy (XMCD). We find a small $(l0.03{\ensuremath{\mu}}_{B})$ Ti moment oriented antiparallel and a large $(g3{\ensuremath{\mu}}_{B})$ Mn moment oriented parallel to the Co moment of approximately $1{\ensuremath{\mu}}_{B}$ per atom in the investigated compounds. Orb…
Short and long range order of Half-Heusler phases in (Ti,Zr,Hf)CoSb thermoelectric compounds
Abstract The structural properties of (Ti,Zr,Hf)CoSb thermoelectric Half-Heusler compounds were investigated by synchrotron radiation based techniques. The short-range order, in particular the environment of the Co atoms, was studied by extended X-Ray absorption fine structure spectroscopy and the long range order by powder X-Ray diffraction. Structural models were obtained for the single phase materials TiCoSb0.85Sn0.15, ZrCoSb0.85Sn0.15, and HfCoSb0.85Sn0.15. These models were transferred for the phase-separated material Ti0.5Hf0.5CoSb0.85Sn0.15. As a result, proving that each Half-Heusler phase was well ordered, apart from the intermixing of Ti and Hf on its designated crystallographic l…
Element-specific magnetic moments and spin-resolved density of states in CoFeMnZ(Z=Al, Ga; Si, Ge)
Using circular dichroism in x-ray-absorption spectroscopy (XAS/XMCD), we determined element-specific magnetic moments and spin-resolved unoccupied densities of states (DOS) for Co, Fe, and Mn in the quaternary Heusler compounds CoFeMn$Z$ ($Z=\text{Al}$, Ga; Si, Ge). These compounds belong to a class of highly spin-polarized materials with cubic LiMgPdSn-type structure. Different structure models for the sublattice occupation leading to similar average magnetization values can be distinguished by comparison of element-specific moments with theory. We find that the compounds form similar structures, where Co, Fe, Mn, and $Z$ occupy the $X$, ${X}^{\ensuremath{'}}$, $Y$, and $Z$ sublattice of t…
Electronic structure and optical, mechanical, and transport properties of the pure, electron-doped, and hole-doped Heusler compound CoTiSb
The Heusler compound CoTiSb was synthesized and investigated theoretically and experimentally with respect to electronic structure and optical, mechanical, and vibrational properties. The optical properties were investigated in a wide spectral range from 10 meV to 6.5 eV and compared with ab initio calculations. The optical spectra confirm the semiconducting nature of CoTiSb, with a strong exciton absorption at 1.83 eV. The calculated phonon dispersion as well as elastic constants verify the mechanical stability of CoTiSb in the cubic $C{1}_{b}$ system. Furthermore, solid solution series of CoTi${}_{1\ensuremath{-}x}$${M}_{x}$Sb ($M=\text{Sc}$, V and $0\ensuremath{\leqslant}x\ensuremath{\le…
Magnetic dichroism in angle-resolved hard x-ray photoemission from buried layers
This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard x-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co${}_{2}$FeAl layer buried beneath the IrMn layer. A pronou…
Half-Heusler materials as model systems for phase-separated thermoelectrics
Semiconducting half-Heusler compounds based on NiSn and CoSb have attracted attention because of their good performance as thermoelectric materials. Nanostructuring of the materials was experimentally established through phase separation in (T1−x′Tx″)T(M1−yMy′) alloys when mixing different transition metals (T, T′, T″) or main group elements (M, M′). The electric transport properties of such alloys depend not only on their micro- or nanostructure but also on the atomic-scale electronic structure. In the present work, the influence of the band structure and density of states on the electronic transport and thermoelectric properties is investigated in detail for the constituents of phase-sepa…
A nondestructive analysis of the B diffusion in Ta–CoFeB–MgO–CoFeB–Ta magnetic tunnel junctions by hard x-ray photoemission
This work reports on hard x-ray photoelectron spectroscopy (HAXPES) of CoFeB based tunnel junctions. Aim is to explain the role of the boron diffusion for the observed improvement of the tunneling magnetoresistance ratio with increasing annealing temperature. The high bulk sensitivity of HAXPES was used as a nondestructive technique to analyze CoFeB–MgO–CoFeB magnetic tunnel junctions. The investigated samples were processed at different annealing temperatures from 523 to 923 K. Hard x-ray core level spectroscopy reveals an enforced diffusion of boron from the CoFeB into the adjacent Ta layer with increasing annealing temperature. The dependence of the tunneling magnetoresistance on the ann…
Magnetic and Structural Properties of Heusler Compounds with 27.8 Valence Electrons
Co2-based Heusler compounds with 27.8 valence electrons exhibit an exceptional electronic structure that makes them interesting materials for the application in spintronics. Co2Cr0.6Fe0.4Al is the most prominent example of this particular family of compounds. In this article new materials of this class are tested with respect to their structural and magnetic properties. X-ray diffraction, Mossbauer spectroscopy, energy dispersive X-ray spectroscopy, and SQUID magnetometry were carried out to characterize the compounds. The use of Co2Fe0.45Ti0.55Ge as a new material in spintronic devices is suggested.
Pd–M/C (M = Pd, Cu, Pt) Electrocatalysts for Oxygen Reduction Reaction in Alkaline Medium: Correlating the Electronic Structure with Activity
The increasing global needs for clean and renewable energy have fostered the design of new and highly efficient materials for fuel cells applications. In this work, Pd-M (M = Pd, Cu, Pt) and Pt nanoparticles were prepared by a green synthesis method. The carbon-supported nanoparticles were evaluated as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium. A comprehensive electronic and structural characterization of these materials was achieved using X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. Their electrochemical properties were investigated by cyclic voltammetry, while the…
Bei Raumtemperatur flüssige ionische Verbindungen auf Dysprosium-Basis mit starker Lumineszenz und Reaktion auf magnetische Felder
Effect of the Content and Ordering of the sp2 Free Carbon Phase on the Charge Carrier Transport in Polymer-Derived Silicon Oxycarbides
The present work elaborates on the correlation between the amount and ordering of the free carbon phase in silicon oxycarbides and their charge carrier transport behavior. Thus, silicon oxycarbides possessing free carbon contents from 0 to ca. 58 vol.% (SiOC/C) were synthesized and exposed to temperatures from 1100 to 1800 °
Tuning the carrier concentration for thermoelectrical application in the quaternary Heusler compound Co2TiAl(1−x)Six
The family of half-metallic ferromagnets Co2TiZ exhibits exceptional transport properties. The investigated compounds Co2TiAl(1−x)Six (x = 0.25, 0.5, 0.75) show Curie temperatures (TCs) that vary between 250 and 350 K, depending on the composition. Above TC the Seebeck coefficient remains constant. This makes them promising candidates for thermoelectric devices such as thermocouples with a tunable working range. The electrical resistivity data show an anomaly at TC which is attributed to changes in the electronic structure and therefore in the carrier concentration.
A spatially resolved investigation of the local, micro-magnetic domain structure of single and polycrystalline Co2FeSi
The Heusler compound Co2FeSi is a promising material for magneto-electronic devices. With a Curie temperature of 1100?K and a saturation magnetization of 6?Bohr magnetons and a high spin polarization at the Fermi edge it fulfils the essential requirements for magnetic sensors or spin valve structures. An essential feature for such devices is the micro-magnetic domain structure. X-ray magnetic circular dichroism?photo emission electron microscopy has been used for a direct observation of the domain structure of single- and polycrystalline samples. The polycrystalline material exhibits a micro-magnetic ripple structure, as it is well known for pure Co and other polycrystalline Heusler compoun…
Epitaxial growth and thermoelectric properties of TiNiSn and Zr0.5Hf0.5NiSn thin films
Abstract Due to their exceptional thermoelectric properties Half-Heusler alloys like MNiSn (M = Ti,Zr,Hf) have moved into focus. The growth of single crystalline thin film TiNiSn and Zr 0.5 Hf 0.5 NiSn by dc magnetron sputtering is reported. Seebeck and resistivity measurements were performed and their dependence on epitaxial quality is shown. Seebeck coefficient, specific resistivity and power factor for Zr 0.5 Hf 0.5 NiSn at room temperature were measured to be 63 μV K − 1 , 14.1 μΩ m and 0.28 mW K − 2 m − 1 , respectively. Multilayers of TiNiSn and Zr 0.5 Hf 0.5 NiSn are promising candidates to increase the thermoelectric figure-of-merit by decreasing thermal conductivity perpendicular …
Phase separation in the quaternary Heusler compound CoTi(1−x)MnxSb – A reduction in the thermal conductivity for thermoelectric applications
We investigate the phase separation of the solid solution CoTi(1−x)MnxSb into the two Heusler compounds CoTiSb and CoMnSb. Energy-dispersive X-ray spectroscopy measurements on the two-phase material reveal the presence of size- and shape-tunable CoTiSb regions in a CoMnSb matrix. We demonstrate that the formed phase and grain boundaries have a considerable influence on the phonon scattering processes, which leads to a reduction in the thermal conductivity by a factor of three compared to single-phase CoTiSb.
Bulk sensitive photo emission spectroscopy of C1b compounds
This work reports about bulk-sensitive, high energy photoelectron spectroscopy from the valence band of CoTiSb excited by photons from 1.2 to 5 keV energy. The high energy photoelectron spectra were taken at the KMC-1 high energy beamline of BESSY II employing the recently developed Phoibos 225 HV analyser. The measurements show a good agreement to calculations of the electronic structure using the LDA scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared to low energy XPS spectra.
Seebeck coefficients of half-metallic ferromagnets
In this report the Co2 based Heusler compounds are discussed as potential materials for spin voltage generation. The compounds were synthesized by arcmelting and consequent annealing. Band structure calculations were performed and revealed the compounds to be half-metallic ferromagnets. Magnetometry was performed on the samples and the Curie temperatures and the magnetic moments were determined. The Seebeck coefficients were measured from low to ambient temperatures for all compounds. For selected compounds high temperature measurements up to 900 K were performed.
Magnetic properties of Co2Mn1−xFexSi Heusler alloys
Co2Mn1−xFexSi Heusler alloys with Fe concentration x = 0–0.4 as prepared by arc melting show a L21 long range order for all Fe concentrations. Magnetic properties of Co2Mn1−xFexSi Heusler alloys were investigated by magnetometry and circular magnetic dichroism. The magnetization of the Fe doped Heusler alloys is in agreement with the Slater–Pauling values expected for half-metallic ferromagnets. Element specific magnetic moments as determined by x-ray absorption using the total electron yield method are in disagreement with theoretical predictions for x = 0 but approach the predicted values as the Fe concentration increases. Surprisingly small Fe concentration increases the magnetic moments…
Experimental and theoretical investigation of Cr1-xScxN solid solutions for thermoelectrics
The ScN- and CrN-based transition-metal nitrides have recently emerged as a novel and unexpected class of materials for thermoelectrics. These materials constitute well-defined model systems for investigating mixing thermodynamics, phase stability, and band structure aiming for property tailoring. Here, we demonstrate an approach to tailor their thermoelectric properties by solid solutions. The trends in mixing thermodynamics and densities-of-states (DOS) of rocksalt-Cr1-xScxN solid solutions (0 ≤ x ≤ 1) are investigated by first-principles calculations, and Cr1-xScxN thin films are synthesized by magnetron sputtering. Pure CrN exhibits a high power factor, 1.7 × 10−3 W m−1 K−2 at 720 K, en…
Spintronics: a challenge for materials science and solid-state chemistry.
Spintronics is a multidisciplinary field involving physics, chemistry, and engineering, and is a new research area for solid-state scientists. A variety of new materials must be found to satisfy different demands. The search for ferromagnetic semiconductors and stable half-metallic ferromagnets with Curie temperatures higher than room temperature remains a priority for solid-state chemistry. A general understanding of structure-property relationships is a necessary prerequisite for the design of new materials. In this Review, the most important developments in the field of spintronics are described from the point of view of materials science.
Thermoelectrics: From history, a window to the future
Thermoelectricity offers a sustainable path to recover and convert waste heat into readily available electric energy, and has been studied for more than two centuries. From the controversy between Galvani and Volta on the Animal Electricity, dating back to the end of the XVIII century and anticipating Seebeck’s observations, the understanding of the physical mechanisms evolved along with the development of the technology. In the XIX century Ørsted clarified some of the earliest observations of the thermoelectric phenomenon and proposed the first thermoelectric pile, while it was only after the studies on thermodynamics by Thomson, and Rayleigh’s suggestion to exploit the Seebeck effect for …
Probing the Size Effect of Co2FeGa-SiO2@C Nanocomposite Particles Prepared by a Chemical Approach
In this contribution, we report the chemical synthesis of carbon coated, silica supported Co2FeGa (Co2FeGa-SiO2@C) nanocomposite particles. The particle size of Co2FeGa particles can be tuned by varying the amount of silica supports. The dependences of the crystal structure and magnetic properties on particle size have been investigated by synchrotron radiation based X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, transmission electron microscope (TEM), 57Fe Mossbauer spectroscopy, and superconducting quantum interference device (SQUID). The superparamagnetic critical size of Co2FeGa Heusler nanoparticles is found to be ∼17 nm by correlating the TEM derived par…
Reduced thermal conductivity of TiNiSn/HfNiSn superlattices
Diminution of the thermal conductivity is a crucial aspect in thermoelectric research. We report a systematic and significant reduction of the cross-plane thermal conductivity in a model system consisting of DC sputtered TiNiSn and HfNiSn half-Heusler superlattices. The reduction of $\kappa$ is measured by the 3$\omega$ method and originates from phonon scattering at the internal interfaces. Heat transport in the superlattices is calculated based on Boltzmann transport theory, including a diffusive mismatch model for the phonons at the internal interfaces. Down to superlattice periodicity of 3 nm the phonon spectrum mismatch between the superlattice components quantitatively explains the re…
Rational design of new materials for spintronics: Co2FeZ (Z=Al, Ga, Si, Ge)
Spintronic is a multidisciplinary field and a new research area. New materials must be found for satisfying the different types of demands. The search for stable half-metallic ferromagnets and ferromagnetic semiconductors with Curie temperatures higher than room temperature is still a challenge for solid state scientists. A general understanding of how structures are related to properties is a necessary prerequisite for material design. Computational simulations are an important tool for a rational design of new materials. The new developments in this new field are reported from the point of view of material scientists. The development of magnetic Heusler compounds specifically designed as …
Long-Term Stability of (Ti/Zr/Hf)CoSb1−xSnxThermoelectric p-Type Half-Heusler Compounds Upon Thermal Cycling
The effect of thermal cycling upon the thermoelectric performance of state-of-the-art p-type half-Heusler materials was investigated and correlated with the impact on the structural properties. We simulated a heat treatment of the material similar to actual applications in the mid-temperature range, such as occurs during the energy conversion from an automotive exhaust pipe. We compared three different compositions based on the (Ti/Zr/Hf)CoSb1−xSnx system. The best and most reliable performance was achieved using Ti0.5Hf0.5CoSb0.85Sn0.15, which reached a maximum figure of merit ZT of 1.1 at 700 °C. The intrinsic phase separation and resulting microstructuring, which are responsible for the …
Fabrication of layered nanostructures by successive electron beam induced deposition with two precursors: protective capping of metallic iron structures
We report on the stepwise generation of layered nanostructures via electron beam induced deposition (EBID) using organometallic precursor molecules in ultra-high vacuum (UHV). In a first step a metallic iron line structure was produced using iron pentacarbonyl; in a second step this nanostructure was then locally capped with a 2-3 nm thin titanium oxide-containing film fabricated from titanium tetraisopropoxide. The chemical composition of the deposited layers was analyzed by spatially resolved Auger electron spectroscopy. With spatially resolved x-ray absorption spectroscopy at the Fe L₃ edge, it was demonstrated that the thin capping layer prevents the iron structure from oxidation upon e…
On the Phase Separation in n-Type Thermoelectric Half-Heusler Materials
Half-Heusler compounds have been in focus as potential materials for thermoelectric energy conversion in the mid-temperature range, e.g., as in automotive or industrial waste heat recovery, for more than ten years now. Because of their mechanical and thermal stability, these compounds are advantageous for common thermoelectric materials such as Bi 2 Te 3 , SiGe, clathrates or filled skutterudites. A further advantage lies in the tunability of Heusler compounds, allowing one to avoid expensive and toxic elements. Half-Heusler compounds usually exhibit a high electrical conductivity σ , resulting in high power factors. The main drawback of half-Heusler compounds is their high lattice th…
Heusler compounds as ternary intermetallic nanoparticles: Co2FeGa
This work describes the preparation of ternary nanoparticles based on the Heusler compound Co2FeGa. Nanoparticles with sizes of about 20?nm were synthesized by reducing a methanol impregnated mixture of CoCl2 ? 6H2O, Fe(NO3)3 ? 9H2O and Ga(NO3)3 ? xH2O after loading on fumed silica. The dried samples were heated under pure H2 gas at 900??C. The obtained nanoparticles?embedded in silica?were investigated by means of x-ray diffraction (XRD), transmission electron microscopy, temperature dependent magnetometry and M??bauer spectroscopy. All methods clearly revealed the Heusler-type L21 structure of the nanoparticles. In particular, anomalous XRD data demonstrate the correct composition in addi…
Doped semiconductors as half-metallic materials: Experiments and first-principles calculations ofCoTi1−xMxSb(M=Sc, V, Cr, Mn, Fe)
This work reports experiments and first-principles calculations on the substitutional semiconducting $C{1}_{b}$ compound $\mathrm{Co}{\mathrm{Ti}}_{1\ensuremath{-}x}{M}_{x}\mathrm{Sb}$. Diluted magnetic semiconductors have been prepared by substituting titanium in the semiconducting compound CoTiSb by other $3d$ transition elements $M$. Self-consistent calculations of the electronic structure predict some of the materials to be half-metallic ferromagnets. The structural, electronic, electric, and magnetic properties of the pure and substituted materials have been investigated. It is found from the experiments that substitution of up to 10% Ti by Fe, Mn, Cr, and V does not affect the crystal…
High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy
In this study, a segmented p-type leg of doped misfit-layered cobaltite Ca_(2.8)Lu_(0.15)Ag_(0.05)Co_4O_(9+δ) and half-Heusler Ti_(0.3)Zr_(0.35)Hf_(0.35)CoSb_(0.8)Sn_(0.2) alloy was fabricated and characterized. The thermoelectric properties of single components, segmented leg, and the electrical contact resistance of the joint part were measured as a function of temperature. The output power generation characteristics of segmented legs were characterized in air under various temperature gradients, ΔT, with the hot side temperature up to 1153 K. At ΔT ≈ 756 K, the maximum conversion efficiency reached a value of ∼5%, which is about 65% of that expected from the materials without parasitic l…
Thermoelectric properties of spark plasma sintered composites based on TiNiSn half-Heusler alloys
Half-Heusler (HH) and especially TiNiSn-based alloys have shown high potential as thermoelectric (TE) materials for power generation applications. The reported transport properties show, however, a significant spread of results, due mainly to the difficulty in fabricating single-phase HH samples in these multicomponent and multiphased systems. In particular, little attention has been paid to the influence of the various minority phases on the TE performance of these compounds. A clear understanding of these issues is mandatory for the design of improved and stable TE HH-based composites. This study examines the structural and compositional influence of the residual metallic (Sn) and interme…
Optimum Carrier Concentration in n-Type PbTe Thermoelectrics
Taking La- and I-doped PbTe as an example, the current work shows the effects of optimizing the thermoelectric figure of merit, zT, by controlling the doping level. The high doping effectiveness allows the carrier concentration to be precisely designed and prepared to control the Fermi level. In addition to the Fermi energy tuning, La-doping modifies the conduction band, leading to an increase in the density of states effective mass that is confirmed by transport, infrared reflectance and hard X-ray photoelectron spectroscopy measurements. Taking such a band structure modification effect into account, the electrical transport properties can then be well-described by a self-consistent single…
Influence of nanoscale order–disorder transitions on the magnetic properties of Heusler compounds for spintronics
Modifications in nanoscale chemical order are used to tune the magnetic properties, namely T-C, of Co2FeSixAl1-x (0 < x < 1). High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with Z-contrast reveals nanoscale regions of L2(1) order within a B2 matrix in the off-stoichiometry samples. Perhaps surprisingly, the latter, more chemically disordered structure, exhibits a higher T-C. Upon annealing, the off-stoichiometry samples become more homogeneous with the fraction of L2(1) order decreasing. The short-range order was also investigated using X-ray absorption fine structure (XAFS) measurements at the Co and Fe K edges. Since the local atomic environments of C…
Phase-separation-induced changes in the magnetic and transport properties of the quaternary Heusler alloyCo2Mn1−xTixSn
The quaternary Heusler compound ${\text{Co}}_{2}{\text{Mn}}_{1\ensuremath{-}x}{\text{Ti}}_{x}\text{Sn}$ with $x=0$, 0.2, 0.4, 0.5, 0.6, 0.8, and 1 shows a phase separation into the two Heusler compounds, ${\text{Co}}_{2}\text{MnSn}$ and ${\text{Co}}_{2}\text{TiSn}$. Only at the edges of the composition range a slight admixture of Mn and Ti to the respective other phase is observed. This phase separation leads to a distinct microstructure which can be altered by the composition of the material. Pronounced changes in the magnetic and electronic properties take place with varying composition. Two magnetic transitions occur which indicate different Curie temperatures for both phases. The reduct…
Epitaxial film growth and magnetic properties ofCo2FeSi
We have grown thin films of the Heusler compound ${\mathrm{Co}}_{2}\mathrm{Fe}\mathrm{Si}$ by RF magnetron sputtering. On (100)-oriented MgO substrates we find fully epitaxial (100)-oriented and $L{2}_{1}$ ordered growth. On ${\mathrm{Al}}_{2}{\mathrm{O}}_{3}(11\overline{2}0)$ substrates, the film growth is (110)-oriented, and several in-plane epitaxial domains are observed. The temperature dependence of the electrical resistivity shows a power law with an exponent of $7∕2$ at low temperatures. Investigation of the bulk magnetic properties reveals an extrapolated saturation magnetization of $5.0{\ensuremath{\mu}}_{B}∕\mathrm{f.u.}$ at $0\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. The films on $…
Towards higher zT in early transition metal oxides: optimizing the charge carrier concentration of the WO3-x compounds
Abstract Thermoelectric devices are believed to play an important role in the energy research for the next decades. Thanks to their low costs coupled with high stability and sustainability, metal oxides are very promising materials even if their efficiencies still need improvements to ensure a wide applicability. Slightly reduced early transition metal oxides show intrinsic defects in the crystal structure which guarantee very low values of the thermal conductivity. The challenge to fulfil the “phonon-glass electron-crystal” concept is to decouple the optimization of the electronic properties from the thermal transport properties. In this contribution we report the optimization of the charg…
Electronic, magnetic, and structural properties of the ferrimagnet Mn2CoSn
The magnetic ground state of the Heusler compound Mn${}_{2}$CoSn was predicted to be nearly half-metallic ferrimagnetic with a high spin polarization by ab initio electronic structure calculations. Mn${}_{2}$CoSn was synthesized, and the magnetic behavior of the compound was studied using a superconducting quantum interference device and x-ray magnetic circular dichroism. The experimental values were found to be in fair accordance with the theoretical predictions. The electronic structure and the crystal structure of Mn${}_{2}$CoSn were characterized comprehensively using x-ray powder diffraction, $^{119}\mathrm{Sn}$ M\"ossbauer spectroscopy, nuclear magnetic resonance, and hard x-ray photo…