Search results for "toxicity."
showing 10 items of 2180 documents
The role of Plasma Membrane Calcium ATPases (PMCAs) in neurodegenerative disorders
2017
Selective degeneration of differentiated neurons in the brain is the unifying feature of neurodegenerative disorders such as Parkinson's disease (PD) or Alzheimer's disease (AD). A broad spectrum of evidence indicates that initially subtle, but temporally early calcium dysregulation may be central to the selective neuronal vulnerability observed in these slowly progressing, chronic disorders. Moreover, it has long been evident that excitotoxicity and its major toxic effector mechanism, neuronal calcium overload, play a decisive role in the propagation of secondary neuronal death after acute brain injury from trauma or ischemia. Under physiological conditions, neuronal calcium homeostasis is…
Prevention of carcinogenesis and metastasis by Artemisinin-type drugs.
2018
Artemisia annua (sweet wormwood, qinhao) is an ancient Chinese herbal remedy for pyrexia. Nowadays, artemisinin (qinghaosu) and its derivatives belong to the standard therapies against malaria worldwide, and its discovery has led to the Nobel Prize in Physiology and Medicine to Youyou Tu in 2015. While most attention has been paid to the treatment of malaria, there is increasing evidence that Artemisinin-type drugs bear a considerable potential to treat and prevent cancer. Rather than reporting on therapy of cancer, this review gives a comprehensive and timely overview on the chemopreventive effects of artemisinin and its derivatives against carcinogenesis and metastasis formation, followin…
Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology.
2019
Drug repurposing (or repositioning) is an emerging concept to use old drugs for new treatment indications. Phytochemicals isolated from medicinal plants have been largely neglected in this context, although their pharmacological activities have been well investigated in the past, and they may have considerable potentials for repositioning. A grand number of plant alkaloids inhibit syngeneic or xenograft tumor growth in vivo. Molecular modes of action in cancer cells include induction of cell cycle arrest, intrinsic and extrinsic apoptosis, autophagy, inhibition of angiogenesis and glycolysis, stress and anti-inflammatory responses, regulation of immune functions, cellular differentiation, a…
Betulinic acid induces a novel cell death pathway that depends on cardiolipin modification
2016
Cancer is associated with strong changes in lipid metabolism. For instance, normal cells take up fatty acids (FAs) from the circulation, while tumour cells generate their own and become dependent on de novo FA synthesis, which could provide a vulnerability to target tumour cells. Betulinic acid (BetA) is a natural compound that selectively kills tumour cells through an ill-defined mechanism that is independent of BAX and BAK, but depends on mitochondrial permeability transition-pore opening. Here we unravel this pathway and show that BetA inhibits the activity of steroyl-CoA-desaturase (SCD-1). This enzyme is overexpressed in tumour cells and critically important for cells that utilize de n…
Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines.
2017
ABSTRACT Glioblastoma multiforme (GBM) exhibits high resistance to the standard treatment of temozolomide (TMZ) combined with radiotherapy, due to its remarkable cell heterogeneity. Accordingly, there is a need to target alternative molecules enhancing specific GBM autocrine or paracrine mechanisms and amplifying the effect of standard treatment. Sphingosine 1-phosphate (S1P) is such a lipid target molecule with an important role in cell invasion and proliferation. Sphingosine kinase inhibitors (SKI) prevent S1P formation and induce increased production of reactive oxygen species (ROS), which may potentiate radiation cytotoxicity. We analyzed the effect of SKI singular versus combined treat…
Primary and metastatic brain cancer genomics and emerging biomarkers for immunomodulatory cancer treatment
2018
Abstract: Recent studies with immunomodulatory agents targeting both cytotoxic T-lymphocyte protein 4 (CTLA4) and programmed cell death 1 (PD1)/programmed cell death ligand 1 (PDL1) have shown to be very effective in several cancers revealing an unexpected great activity in patients with both primary and metastatic brain tumors. Combining anti-CTLA4 and anti-PD1 agents as upfront systemic therapy has revealed to further increase the clinical benefit observed with single agent, even at cost of higher toxicity. Since the brain is an immunological specialized area it's crucial to establish the specific composition of the brain tumors' micro environment in order to predict the potential activit…
Artesunate Inhibits Growth of Sunitinib-Resistant Renal Cell Carcinoma Cells through Cell Cycle Arrest and Induction of Ferroptosis
2020
Although innovative therapeutic concepts have led to better treatment of advanced renal cell carcinoma (RCC), efficacy is still limited due to the tumor developing resistance to applied drugs. Artesunate (ART) has demonstrated anti-tumor effects in different tumor entities. This study was designed to investigate the impact of ART (1&ndash
Adapter Chimeric Antigen Receptor (AdCAR)-Engineered NK-92 Cells for the Multiplex Targeting of Bone Metastases
2021
Simple Summary Metastatic disease remains one of the biggest challenges for tumor therapy. The aim of our study was the preclinical evaluation of adapter chimeric antigen receptor (AdCAR)-engineered NK-92 cell efficacy as a possible treatment strategy for various types of bone metastatic cancers. We confirmed that AdCAR NK-92 cells successfully induces tumor cell lysis in bone metastasis cell lines derived from mammary, renal cell and colorectal carcinoma as well as melanoma in a specific and controllable manner, thus, establishing a potent cellular product with universal applicability and quick clinical translation potential for the treatment of solid tumors, including metastases. Abstract…
Evaluation of in vivo and in vitro models of toxicity by comparison of toxicogenomics data with the literature.
2017
Toxicity affecting humans is studied by observing the effects of chemical substances in animal organisms (in vivo) or in animal and human cultivated cell lines (in vitro). Toxicogenomics studies collect gene expression profiles and histopathology assessment data for hundreds of drugs and pollutants in standardized experimental designs using different model systems. These data are an invaluable source for analyzing genome-wide drug response in biological systems. However, a problem remains that is how to evaluate the suitability of heterogeneous in vitro and in vivo systems to model the many different aspects of human toxicity. We propose here that a given model system (cell type or animal o…
Cytotoxic effects induced by patulin, deoxynivalenol and toxin T2 individually and in combination in hepatic cells (HepG2).
2018
Abstract Patulin (PAT), deoxynivalenol (DON) and toxin T-2 (T-2) are mycotoxins distributed worldwide in food and feed. Cytotoxicity of the three mycotoxins individually or in combination in human hepatocellular carcinoma (HepG2) cells was evaluated by MTT assay over 24, 48 and 72 h of exposure. The concentration ranges used were 0.625–15 μM for DON, 1.25–50 nM for T-2 and 0.45–7.5 μM for PAT. The IC 50 values obtained ranged from 9.30 to 2.53 μM, from 33.69 to 44.37 nM and from 2.66 to 1.17 μM for DON, T-2 and PAT, respectively. The most cytotoxic mycotoxin to HepG2 cells was T-2 followed by PAT and DON. The combination ratios used for the mixtures were 1:3 (DON: T-2), 1:5 (DON: PAT), 1:1.…