Search results for "transcription factors"

showing 10 items of 848 documents

NFATc1 releases BCL6-dependent repression of CCR2 agonist expression in peritoneal macrophages fromSaccharomyces cerevisiaeinfected mice

2016

The link between the extensive usage of calcineurin (CN) inhibitors cyclosporin A and tacrolimus (FK506) in transplantation medicine and the increasing rate of opportunistic infections within this segment of patients is alarming. Currently, how peritoneal infections are favored by these drugs, which impair the activity of several signaling pathways including the Ca(++) /CN/NFAT, Ca(++) /CN/cofilin, Ca(++) /CN/BAD, and NF-κB networks, is unknown. Here, we show that Saccharomyces cerevisiae infection of peritoneal resident macrophages triggers the transient nuclear translocation of NFATc1β isoforms, resulting in a coordinated, CN-dependent induction of the Ccl2, Ccl7, and Ccl12 genes, all enc…

0301 basic medicineChemokineReceptors CCR2Calcineurin InhibitorsImmunologySaccharomyces cerevisiaeOpportunistic InfectionsCCL7MonocytesMice03 medical and health sciences0302 clinical medicineCyclosporin aAnimalsProtein IsoformsImmunology and AllergyChemokine CCL7Promoter Regions GeneticCCL12Transcription factorChemokine CCL2NFATC Transcription FactorsbiologyCalcineurinNF-kappa BNFATNFATC Transcription FactorsMonocyte Chemoattractant Proteins3. Good healthCalcineurinProtein Transport030104 developmental biology030220 oncology & carcinogenesisMacrophages PeritonealProto-Oncogene Proteins c-bcl-6biology.proteinCancer researchEuropean Journal of Immunology
researchProduct

A murine intestinal intraepithelial NKp46-negative innate lymphoid cell population characterized by group 1 properties

2017

The Ly49E receptor is preferentially expressed on murine innate-like lymphocytes, such as epidermal Vγ3 T cells, intestinal intraepithelial CD8αα(+) T lymphocytes, and CD49a(+) liver natural killer (NK) cells. As the latter have recently been shown to be distinct from conventional NK cells and have innate lymphoid cell type 1 (ILC1) properties, we investigated Ly49E expression on intestinal ILC populations. Here, we show that Ly49E expression is very low on known ILC populations, but it can be used to define a previously unrecognized intraepithelial innate lymphoid population. This Ly49E-positive population is negative for NKp46 and CD8αα, expresses CD49a and CD103, and requires T-bet expre…

0301 basic medicineCytotoxicity ImmunologicSUBSETSROR-GAMMA-TLYMPHOCYTESILC1TranscriptomeMice0302 clinical medicineInterferonNKp46-negativeMedicine and Health SciencesAntigens LyInterferon gammaLymphocytesIFN-γlcsh:QH301-705.5education.field_of_studyintestinalIFN-GAMMAInnate lymphoid cellNATURAL-KILLERIntestinesKiller Cells NaturalPhenotypeDIFFERENTIATIONSignal transductionNK Cell Lectin-Like Receptor Subfamily Amedicine.drugSignal TransductionintraepithelialEXPRESSIONPopulationNKP46(+) CELLSBiologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesInterferon-gammaImmunityAntigens CDmedicineAnimalseducationCell ShapeNatural Cytotoxicity Triggering Receptor 1INHIBITORY RECEPTORSBiology and Life SciencesEpithelial CellsMolecular biologyImmunity InnateNK-CELLS030104 developmental biologyNatural Cytotoxicity Triggering Receptor 1lcsh:Biology (General)ImmunologyTranscriptomeLy49E030215 immunologyTranscription Factors
researchProduct

Contribution of allelic imbalance to colorectal cancer

2018

Point mutations in cancer have been extensively studied but chromosomal gains and losses have been more challenging to interpret due to their unspecific nature. Here we examine high-resolution allelic imbalance (AI) landscape in 1699 colorectal cancers, 256 of which have been whole-genome sequenced (WGSed). The imbalances pinpoint 38 genes as plausible AI targets based on previous knowledge. Unbiased CRISPR-Cas9 knockout and activation screens identified in total 79 genes within AI peaks regulating cell growth. Genetic and functional data implicate loss of TP53 as a sufficient driver of AI. The WGS highlights an influence of copy number aberrations on the rate of detected somatic point muta…

0301 basic medicineDenmarkLoss of HeterozygosityGeneral Physics and AstronomyAllelic ImbalanceLoss of heterozygosityGenotypeddc:576.5RNA Small Interferinglcsh:ScienceRNA Small Interfering/geneticsGeneticsMultidisciplinaryQGenomicsPhenotype3. Good healthGENOMEPhenotypesyöpägeenitAllelic ImbalanceTumor Suppressor Protein p53/geneticsColorectal NeoplasmsChromosomes Human Pair 8GENESDNA Copy Number VariationsGenotypeScienceTranscription Factors/geneticsGenomicscolorectal cancerBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyProto-Oncogene Proteins p21(ras)Proto-Oncogene Proteins p21(ras)/genetics03 medical and health sciencesmedicineHumansPoint MutationGenetic Predisposition to DiseaseGenepaksusuolisyöpäChromosome AberrationsWhole Genome SequencingHUMAN-COLONGene Expression ProfilingPoint mutationCancerGeneral Chemistrymedicine.diseaseColorectal Neoplasms/geneticsENHANCERS030104 developmental biologyCELLSlcsh:Q3111 BiomedicineTumor Suppressor Protein p53CRISPR-Cas SystemsmutaatiotTranscription FactorsMicrosatellite Repeats
researchProduct

Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming.

2016

During the process of reprogramming to induced pluripotent stem (iPS) cells, somatic cells switch from oxidative to glycolytic metabolism, a transition associated with profound mitochondrial reorganization. Neither the importance of mitochondrial remodelling for cell reprogramming, nor the molecular mechanisms controlling this process are well understood. Here, we show that an early wave of mitochondrial fragmentation occurs upon expression of reprogramming factors. Reprogramming-induced mitochondrial fission is associated with a minor decrease in mitochondrial mass but not with mitophagy. The pro-fission factor Drp1 is phosphorylated early in reprogramming, and its knockdown and inhibition…

0301 basic medicineDynaminsSomatic cellMAP Kinase Signaling SystemScienceCèl·lulesCellInduced Pluripotent Stem CellsKruppel-Like Transcription FactorsGeneral Physics and AstronomyBiologyMitochondrionMitochondrial DynamicsGeneral Biochemistry Genetics and Molecular BiologyMitocondrisArticleCell LineProto-Oncogene Proteins c-myc03 medical and health sciencesKruppel-Like Factor 4MiceMitophagymedicineAnimalsPhosphorylationInduced pluripotent stem cellGeneticsMultidisciplinarySOXB1 Transcription FactorsQGeneral ChemistryCellular ReprogrammingCell biologyMitochondria030104 developmental biologymedicine.anatomical_structurePhosphorylationMitochondrial fissionReprogrammingOctamer Transcription Factor-3Nature communications
researchProduct

An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains …

2017

In sea urchin development, structures derived from neurogenic territory control the swimming and feeding responses of the pluteus as well as the process of metamorphosis. We have previously isolated an alpha tubulin family member of Paracentrotus lividus (Pl-Tuba1a, formerly known as Pl-Talpha2) that is specifically expressed in the ciliary band and animal pole neurogenic domains of the sea urchin embryo. In order to identify cis-regulatory elements controlling its spatio-temporal expression, we conducted gene transfer experiments, transgene deletions and site specific mutagenesis. Thus, a genomic region of about 2.6 Kb of Pl-Tuba1a, containing four Interspecifically Conserved Regions (ICRs…

0301 basic medicineEmbryologyPolarity in embryogenesislcsh:MedicineGene ExpressionMedicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)medicine.disease_causeBiochemistryTubulinGene expressionElectron MicroscopyTransgeneslcsh:SciencePromoter Regions GeneticSea urchinConserved SequenceSequence DeletionGeneticsRegulation of gene expressionMicroscopyMutationMultidisciplinaryMedicine (all)Gene Expression Regulation DevelopmentalGenomicsAnimal ModelsTATA BoxEnzymesEnhancer Elements GeneticExperimental Organism Systemsembryonic structuresParacentrotusTranscription Initiation SiteOxidoreductasesLuciferaseResearch ArticleEchinodermsTranscriptional ActivationImaging TechniquesNeurogenesisGreen Fluorescent ProteinsEmbryonic DevelopmentSettore BIO/11 - Biologia MolecolareBiologyResearch and Analysis MethodsGenome ComplexityParacentrotus lividus03 medical and health sciencesSpecies SpecificityTubulinsbiology.animalFluorescence ImagingGeneticsmedicineConsensus sequenceAnimalsCiliaEnhancerBiochemistry Genetics and Molecular Biology (all)Binding SitesModels Geneticlcsh:REmbryosOrganismsBiology and Life SciencesComputational BiologyProteinsbiology.organism_classificationInvertebratesIntronsCytoskeletal Proteins030104 developmental biologyAgricultural and Biological Sciences (all)Bright Field ImagingSea UrchinsEnzymologyMutagenesis Site-Directedlcsh:QTransmission Electron MicroscopyDevelopmental BiologyTranscription FactorsPLOS ONE
researchProduct

Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain.

2016

Abstract The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly ‘forebrain’, develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox ( rx ), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpress…

0301 basic medicineEmbryologyanimal structuresNerve Tissue ProteinsBiologyRetina03 medical and health sciencesNeuroblastNeural Stem CellsAnimalsDrosophila ProteinsMitosisMushroom BodiesCell ProliferationGanglion CystsHomeodomain ProteinsNeuronsCell growthfungiCell CycleBrainNuclear ProteinsAnatomyEmbryonic stem cellNeural stem cellCell biologyRepressor Proteins030104 developmental biologyDrosophila melanogasterLarvaMushroom bodiesForebrainHomeoboxDevelopmental BiologyTranscription FactorsMechanisms of development
researchProduct

TGF-β inhibitor Smad7 regulates dendritic cell-induced autoimmunity

2017

TGF-β is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8(+)CD103(+) DCs in the spleen. Furthermore, Smad7-deficient DCs expressed higher levels of indoleamine 2,3-dioxygenase (IDO), an enzyme associated with tolerance induction. Mice devoid of Smad7 specifically in DCs are resistant to the development of experimental autoimmune ence…

0301 basic medicineEncephalomyelitis Autoimmune Experimentalmedicine.medical_treatmentCellular differentiationAutoimmunitychemical and pharmacologic phenomenaCD8-Positive T-LymphocytesBiologyT-Lymphocytes RegulatorySmad7 ProteinImmune toleranceMice03 medical and health sciences0302 clinical medicineTransforming Growth Factor betaImmune TolerancemedicineAnimalsIndoleamine-Pyrrole 23-DioxygenaseMultidisciplinaryintegumentary systemExperimental autoimmune encephalomyelitisCell Differentiationhemic and immune systemsDendritic CellsDendritic cellTransforming growth factor betamedicine.diseaseCell biologyMice Inbred C57BLTolerance inductionBasic-Leucine Zipper Transcription Factors030104 developmental biologyCytokinePNAS PlusInterferon Regulatory FactorsImmunologybiology.proteinCytokinesSpleenCD8Signal Transduction030215 immunology
researchProduct

Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM

2019

Single-cell transcriptomic assays have enabled the de novo reconstruction of lineage differentiation trajectories, along with the characterization of cellular heterogeneity and state transitions. Several methods have been developed for reconstructing developmental trajectories from single-cell transcriptomic data, but efforts on analyzing single-cell epigenomic data and on trajectory visualization remain limited. Here we present STREAM, an interactive pipeline capable of disentangling and visualizing complex branching trajectories from both single-cell transcriptomic and epigenomic data. We have tested STREAM on several synthetic and real datasets generated with different single-cell techno…

0301 basic medicineEpigenomicsMultifactor Dimensionality ReductionComputer scienceGeneral Physics and Astronomy02 engineering and technologyOmics dataMyoblastsMiceSingle-cell analysisGATA1 Transcription FactorMyeloid CellsLymphocyteslcsh:ScienceData processingMultidisciplinaryQGene Expression Regulation DevelopmentalRNA sequencingCell DifferentiationGenomics021001 nanoscience & nanotechnologyData processingDNA-Binding ProteinsInterferon Regulatory FactorsSingle-Cell Analysis0210 nano-technologyAlgorithmsOmics technologiesSignal TransductionLineage differentiationScienceComputational biologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesErythroid CellsAnimalsCell LineageGeneral Chemistrydevelopmental trajectories visualizationHematopoietic Stem CellsPipeline (software)Visualization030104 developmental biologyTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESCellular heterogeneitySingle cell analysilcsh:QGene expressionTranscriptomeTranscription FactorsNature Communications
researchProduct

iDamIDseq and iDEAR: an improved method and computational pipeline to profile chromatin-binding proteins

2016

DNA adenine methyltransferase identification (DamID) has emerged as an alternative method to profile protein-DNA interactions; however, critical issues limit its widespread applicability. Here, we present iDamIDseq, a protocol that improves specificity and sensitivity by inverting the steps DpnI-DpnII and adding steps that involve a phosphatase and exonuclease. To determine genome-wide protein-DNA interactions efficiently, we present the analysis tool iDEAR (iDamIDseq Enrichment Analysis with R). The combination of DamID and iDEAR permits the establishment of consistent profiles for transcription factors, even in transient assays, as we exemplify using the small teleost medaka (Oryzias lati…

0301 basic medicineExonucleaseSite-Specific DNA-Methyltransferase (Adenine-Specific)Embryo NonmammalianOryziasOryziasComputational biologyBiology03 medical and health scienceschemistry.chemical_compoundTechniques and ResourcesTranscriptional regulationDatabases GeneticProtein Interaction MappingTranscriptional regulationAnimalsEpigeneticsPromoter Regions GeneticMolecular BiologyTranscription factorGeneticsBinding SitesChromatin bindingComputational BiologyPromoterSequence Analysis DNADNA Methylationbiology.organism_classificationChromatinDNA-Binding Proteins030104 developmental biologychemistryGene Expression Regulation207Chromatin profilingbiology.proteinDamIDEpigeneticsTranscription factorDNAAlgorithmsDevelopmental BiologyProtein BindingTranscription FactorsDevelopment (Cambridge, England)
researchProduct

Q-nexus: a comprehensive and efficient analysis pipeline designed for ChIP-nexus

2016

Background: ChIP-nexus, an extension of the ChIP-exo protocol, can be used to map the borders of protein-bound DNA sequences at nucleotide resolution, requires less input DNA and enables selective PCR duplicate removal using random barcodes. However, the use of random barcodes requires additional preprocessing of the mapping data, which complicates the computational analysis. To date, only a very limited number of software packages are available for the analysis of ChIP-exo data, which have not yet been systematically tested and compared on ChIP-nexus data. Results: Here, we present a comprehensive software package for ChIP-nexus data that exploits the random barcodes for selective removal …

0301 basic medicineFOS: Computer and information sciencesDuplication ratesChromatin ImmunoprecipitationBioinformaticsPipeline (computing)610Biologycomputer.software_genre600 Technik Medizin angewandte Wissenschaften::610 Medizin und Gesundheit03 medical and health sciencesSoftwareChIP-nexusGeneticsPreprocessorNucleotide MotifsLibrary complexityChIP-exoGeneticsProtocol (science)Binding Sitesbusiness.industryfungiComputational BiologyHigh-Throughput Nucleotide SequencingReproducibility of ResultsChipChromatin immunoprecipitationData mappingDNA-Binding ProteinsAlgorithm030104 developmental biologyChIP-exoData miningbusinessPeak callingcomputerAlgorithmsSoftwareProtein BindingTranscription FactorsResearch ArticleBiotechnologyBMC Genomics
researchProduct