Search results for "transistors"

showing 10 items of 68 documents

Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study

2019

In this work, we report on a comparison among graphene field-effect transistors (GFETs) employing different dielectrics as gate layers to evaluate their microwave response. In particular, aluminum oxide (Al$_{2}$O$_{3}$), titanium oxide (TiO$_{2}$), and hafnium oxide (HfO$_{2}$) have been tested. GFETs have been fabricated on a single chip and a statistical analysis has been performed on a set of 24 devices for each type of oxide. Direct current and microwave measurements have been carried out on such GFETs and short circuit current gain and maximum available gain have been chosen as quality factors to evaluate their microwave performance. Our results show that all of the devices belonging …

TechnologyMaterials scienceGeneral Chemical EngineeringOxide02 engineering and technologyDielectricSettore ING-INF/01 - Elettronica7. Clean energy01 natural sciencesArticlelaw.inventionlcsh:Chemistrychemistry.chemical_compoundlawGraphene Field-Effect Transistors Microwaves Oxide Films0103 physical sciences010302 applied physicsbusiness.industryGrapheneDirect currentTransistorGeneral Chemistry021001 nanoscience & nanotechnologyTitanium oxidelcsh:QD1-999chemistry2018-020-021849ALDOptoelectronicsGraphene0210 nano-technologybusinessddc:600Short circuitMicrowaveACS Omega
researchProduct

Polymorphism-Triggered Reversible Thermochromic Fluorescence of a simple 1,8-Naphthyridine

2013

The fluorescent behavior in the solid state of a naphthyridine-based donor–acceptor heterocycle is presented. Synthesized as a crystalline blue-emissive solid (Pbca), the compound can easily be transformed in its P21/c polymorphic form by heating. The latter material shows blue to cyan emission switching triggered by a reversible thermally induced phase transformation. This fact, the reversible acidochromism, and the strong anisotropic fluorescence of the compound in the solid state, account for the potential of 1,8-naphthyridines as simple and highly tunable organic compounds in materials science.

ThermochromismnaphthyridinesChemistryStereochemistryfield-effect transistorsSolid-statefood and beverageschemical sensorsGeneral ChemistrylassersCondensed Matter PhysicsFluorescenceCombinatorial chemistrysolid-state fluorescencePolymorphism (materials science)emissionconjugated polymersluminescencepackingGeneral Materials ScienceLuminescencephotocromism
researchProduct

Biologically inspired information processing and synchronization in ensembles of non-identical threshold-potential nanostructures.

2013

Nanotechnology produces basic structures that show a significant variability in their individual physical properties. This experimental fact may constitute a serious limitation for most applications requiring nominally identical building blocks. On the other hand, biological diversity is found in most natural systems. We show that reliable information processing can be achieved with heterogeneous groups of non-identical nanostructures by using some conceptual schemes characteristic of biological networks (diversity, frequency-based signal processing, rate and rank order coding, and synchronization). To this end, we simulate the integrated response of an ensemble of single-electron transisto…

Time FactorsTransistors ElectronicScienceMaterials ScienceMonte Carlo methodSynchronizationMaterial by AttributeSet (abstract data type)BiomimeticsImage Processing Computer-AssistedNanotechnologyBiologyNanomaterialsComputational NeurosciencePhysicsCoding MechanismsSignal processingMultidisciplinaryQInformation processingRComputational BiologySignal Processing Computer-AssistedSensory SystemsNanostructuresBionanotechnologyElectronic MaterialsProbability distributionMedicineBiological systemMonte Carlo MethodRealization (systems)Biological networkResearch ArticleBiotechnologyNeurosciencePLoS ONE
researchProduct

A Compact SPICE Model for Organic TFTs and Applications to Logic Circuit Design

2016

This work introduces a compact DC model developed for organic thin film transistors (OTFTs) and its SPICE implementation. The model relies on a modified version of the gradual channel approximation that takes into account the contact effects, occurring at nonohmic metal/organic semiconductor junctions, modeling them as reverse biased Schottky diodes. The model also comprises channel length modulation and scalability of drain current with respect to channel length. To show the suitability of the model, we used it to design an inverter and a ring oscillator circuit. Furthermore, an experimental validation of the OTFTs has been done at the level of the single device as well as with a discrete-…

Transistor modelMaterials scienceFlexible electronics; organic thin film transistors; SPICE modelingSpiceSemiconductor device modelingHardware_PERFORMANCEANDRELIABILITY02 engineering and technologyRing oscillatorIntegrated circuit01 natural scienceslaw.inventionComputer Science::Hardware ArchitectureComputer Science::Emerging Technologieslaw0103 physical sciencesElectronic engineeringHardware_INTEGRATEDCIRCUITSElectrical and Electronic EngineeringFlexible electronics010302 applied physicsChannel length modulationbusiness.industryTransistorSchottky diodeCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyFlexible electronicsComputer Science Applicationsorganic thin film transistorsLogic gateSPICE modelingInverterOptoelectronics0210 nano-technologybusinessHardware_LOGICDESIGNIEEE Transactions on Nanotechnology
researchProduct

Effect of DNA Aptamer Concentration on the Conductivity of a Water-Gated Al:ZnO Thin-Film Transistor-Based Biosensor

2022

This research was supported by State Education Development Agency, Project No. 1.1.1.2/ 16/I/001, Research Proposal No. 1.1.1.2/VIAA/4/20/590 “Portable diagnostic device based on a biosensor array of 2D material sensing elements”.

Transistors ElectronicWaterzinc oxide:NATURAL SCIENCES::Physics [Research Subject Categories]thin-film transistorBiosensing TechniquesDNAAptamers NucleotidebiosensorBiochemistryAtomic and Molecular Physics and OpticsAnalytical ChemistryelectrochemistryZinc OxideElectrical and Electronic EngineeringInstrumentationSensors
researchProduct

Investigation on Metal–Oxide Graphene Field-Effect Transistors With Clamped Geometries

2019

In this work, we report on the design, fabrication and characterization of Metal-Oxide Graphene Field-effect Transistors (MOGFETs) exploiting novel clamped gate geometries aimed at enhancing the device transconductance. The fabricated devices employ clamped metal contacts also for source and drain, as well as an optimized graphene meandered pattern for source contacting, in order to reduce parasitic resistance. Our experimental results demonstrate that MOGFETs with the proposed structure show improved high frequency performance, in terms of maximum available gain and transition frequency values, as a consequence of the higher equivalent transconductance obtained.

Work (thermodynamics)FabricationMaterials scienceTransconductanceOxide02 engineering and technologySettore ING-INF/01 - Elettronica01 natural scienceslaw.inventionchemistry.chemical_compoundlaw0103 physical sciencesElectrical and Electronic Engineering010302 applied physicsbusiness.industryGrapheneGraphene metal-oxide graphene field-effect transistors (MOGFETs) microwave transistors clamped geometries meandered graphene contacts.TransistorSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyElectronic Optical and Magnetic MaterialschemistryLogic gateParasitic elementOptoelectronics0210 nano-technologybusinessBiotechnologyIEEE Journal of the Electron Devices Society
researchProduct

Preliminary test on a cascode switch for high-frequency applications

2020

Nowadays, an increasing electrification level is being addressed towards different sectors, such as transportation and industrial electronics. To bear that, high speed electrical machines represent a mature technology in different application fields, e.g. avionics, automotive, compressors and spindles. In order to guarantee high speed while keeping high power quality without adopting bulky filtering circuits, DC-AC converters shall be controlled by means of high Pulse Width Modulation (PWM) frequencies. In addition to the emerging switching device technologies, such as those based on Silicon-Carbide (SiC) and Gallium-Nitride (GaN), alternative circuital topologies are crucial in order to co…

business.industryComputer science020209 energy020208 electrical & electronic engineeringElectrical engineeringHigh voltageTopology (electrical circuits)high frequency02 engineering and technologyCascode switching devicesSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciConvertersNetwork topology7. Clean energyhigh voltage devices0202 electrical engineering electronic engineering information engineeringCascodeElectronicsbusinesscascode switching devices; high frequency; high voltage devices; power transistorsPulse-width modulationpower transistorsElectronic circuit
researchProduct

High-Performance Electron-Transporting Polymers Derived from a Heteroaryl Bis(trifluoroborate)

2011

In this communication, we report that dipotassium aryl bis(trifluoroborate)s make stable and easy-to-purify yet reactive monomers under Suzuki polycondensation reactions. A bis(trifluoroborate) of 2-alkylbenzotriazole was prepared successfully and copolymerized with dibromobenzothiadiazole in the presence of a Pd catalyst and LiOH, yielding high molecular weight conjugated polymers. This polymer (P1) composed of all electron-accepting units shows excellent electron-transport properties (μ(e) = 0.02 cm(2) V(-1) s(-1)), which proves the value of the aryl bis(trifluoroborate) monomers and suggests that many other types of semiconducting polymers that could not be accessed previously can be syn…

chemistry.chemical_classificationCondensation polymerHalogenationTransistors ElectronicPolymersArylRespiratory electron transportGeneral ChemistryPolymerTriazolesConjugated systemBiochemistryCatalysisCatalysisElectron Transportchemistry.chemical_compoundColloid and Surface ChemistryMonomerchemistryBoratesPolymer chemistryJournal of the American Chemical Society
researchProduct

Aligned microcontact printing of biomolecules on microelectronic device surfaces

2001

Microcontact printing (/spl mu/CP) of extracellular matrix proteins is a fascinating approach to control cell positioning and outgrowth, which is essential in the development of applications ranging from cellular biosensors to tissue engineering. Microelectronic devices can be used to detect the activity from a large number of recording sites over the long term. However, signals from cells can only be recorded at small sensitive spots. Here, the authors present an innovative setup to perform aligned /spl mu/CP of extracellular matrix proteins on microelectronic devices in order to guide the growth of electrogenic cells specifically to these sensitive spots. The authors' system is based on t…

extra cellular matrixMaterials scienceTransistors ElectronicSurface PropertiesSiliconesBiomedical EngineeringmicroelectrodesNanotechnologyHippocampuslaw.inventionRats Sprague-DawleyTissue engineeringlawfield effect transistorsAnimalsMicroelectronicsDimethylpolysiloxanesCells CulturedNeuronschemistry.chemical_classificationbusiness.industryBiomoleculeOptical tableReproducibility of ResultsalignmentEquipment Designmicrocontact printing (mu CP)JExtracellular MatrixRatsMicroelectrodeextracellular recordingchemistry3D-BioMEMSMicrocontact printingmicroelectronic devicesField-effect transistorneuronal networksNeural Networks ComputerbusinessMicroelectrodesBiosensorIEEE Transactions on Biomedical Engineering
researchProduct

GRAPHENE-BASED TRANSISTORS AND DETECTORS: FABRICATION AND CHARACTERIZATION

Carbon and carbon-based systems have always attracted great attention thanks to the almost unlimited different structures they can be arranged in and the equally varied physical properties they own. These characteristics are mainly related to the flexibility of carbon bonding, which makes carbon an extremely versatile “building block” material. Most of the typical properties of each carbon-based system are mainly associated with the dimensionality of the structure itself. In this framework, graphene, the first two-dimensional atomic crystal available to the scientific community, has revealed to play a key role in terms of fundamental physics and potential applications, despite its short sto…

graphene-based detectorinfrared detectorGraphene; graphene-based transistors; graphene-based detectors; microwave transistors; infrared detectors; X-ray detectorsgraphene-based transistormicrowave transistorX-ray detectorsGrapheneSettore ING-INF/01 - Elettronica
researchProduct