Search results for "unique"

showing 10 items of 268 documents

A Fisher–Kolmogorov equation with finite speed of propagation

2010

Abstract In this paper we study a Fisher–Kolmogorov type equation with a flux limited diffusion term and we prove the existence and uniqueness of finite speed moving fronts and the existence of some explicit solutions in a particular regime of the equation.

Entropy solutionsPartial differential equationDiffusion equationApplied MathematicsMathematical analysisFlux limited diffusion equationsReaction–diffusion equationsFront propagationReaction–diffusion systemFisher–Kolmogorov equationFokker–Planck equationUniquenessDiffusion (business)Convection–diffusion equationAnalysisMathematicsJournal of Differential Equations
researchProduct

Delayed chronic intracranial subdural hematoma complicating resection of a tanycytic thoracic ependymoma

2015

Background To demonstrate that the diagnosis of an intracranial subdural hematoma should be considered for patients presenting with acute or delayed symptoms of intracranial pathology following resection of a spinal tumor. Case description We present a case of a 57-year-old woman found to have a chronic subdural hematoma 1 month following resection of a thoracic extramedullary ependymoma. Evacuation of the hematoma through a burr hole relieved the presenting symptoms and signs. Resolution of the hematoma was confirmed with a computed tomography (CT) scan. Conclusion Headache and other symptoms not referable to spinal pathology should be regarded as a warning sign of an intracranial subdural…

Ependymomamedicine.medical_specialtySettore MED/27 - NEUROCHIRURGIAResectionCerebrospinal fluid leakage; chronic subdural hematoma; thoracic ependymoma; Surgery; Neurology (clinical)03 medical and health sciencesCerebrospinal fluid leakage thoracic ependymoma chronic subdural hematoma0302 clinical medicineCerebrospinal fluidHematomaChronic subdural hematomaMedicineSurgical Neurology International: Unique Case Observationscardiovascular diseasesSubdural spaceIntracranial Hypotension030222 orthopedicsbusiness.industrymedicine.diseaseSurgerybody regionsthoracic ependymomamedicine.anatomical_structuresurgical procedures operativechronic subdural hematomaCerebrospinal fluid leakagecardiovascular systemChronic intracranial subdural hematomaSurgeryNeurology (clinical)business030217 neurology & neurosurgery
researchProduct

Existence and uniqueness of solution to several kinds of differential equations using the coincidence theory

2015

The purpose of this article is to study the existence of a coincidence point for two mappings defined on a nonempty set and taking values on a Banach space using the fixed point theory for nonexpansive mappings. Moreover, this type of results will be applied to obtain the existence of solutions for some classes of ordinary differential equations. Ministerio de Economía y Competitividad Junta de Andalucía

Equilibrium point47H09Pure mathematics34A10Differential equationGeneral MathematicsMathematical analysisBanach spaceFixed-point theoremdifferential equationsfractional derivative34A08Fixed pointUlam-Hyers stabilityfixed pointOrdinary differential equationUniquenesscoincidence problemCoincidence pointMathematics
researchProduct

A cubic defining algebra for the Links–Gould polynomial

2013

Abstract We define a finite-dimensional cubic quotient of the group algebra of the braid group, endowed with a (essentially unique) Markov trace which affords the Links–Gould invariant of knots and links. We investigate several of its properties, and state several conjectures about its structure.

Essentially uniqueAlgebraMarkov chainGeneral MathematicsBraid groupGroup algebraBraid theoryInvariant (mathematics)Mathematics::Geometric TopologyQuotientMathematicsAdvances in Mathematics
researchProduct

Notice of Violation of IEEE Publication Principles: Distributed Multimedia Digital Libraries on Peer-to-Peer Networks

2007

This paper presents an original approach to image sharing in large, distributed digital libraries, in which a user is able to interactively search interesting resources by means of content-based image retrieval techniques. The approach described here addresses the issues arising when the content is managed through a peer-to-peer architecture. In this case, the retrieval facilities are likely to be limited to queries based on unique identifiers or small sets of keywords, which may be quite inadequate, so we propose a novel algorithm for routing user queries that exploits compact representations of multimedia resources shared by each peer in order to dynamically adapt the network topology to …

ExploitMultimediabusiness.industryComputer scienceImage sharingPeer-to-peercomputer.software_genreDigital libraryNetwork topologyUnique identifierWorld Wide WebbusinesscomputerImage retrievalContent management14th International Conference of Image Analysis and Processing - Workshops (ICIAPW 2007)
researchProduct

Unique continuation of the normal operator of the x-ray transform and applications in geophysics

2020

We show that the normal operator of the X-ray transform in $\mathbb{R}^d$, $d\geq 2$, has a unique continuation property in the class of compactly supported distributions. This immediately implies uniqueness for the X-ray tomography problem with partial data and generalizes some earlier results to higher dimensions. Our proof also gives a unique continuation property for certain Riesz potentials in the space of rapidly decreasing distributions. We present applications to local and global seismology. These include linearized travel time tomography with half-local data and global tomography based on shear wave splitting in a weakly anisotropic elastic medium.

FOS: Physical sciencesx-ray transformSpace (mathematics)01 natural sciencesTheoretical Computer SciencePhysics - GeophysicsContinuationtomografiaClassical Analysis and ODEs (math.CA)FOS: MathematicsNormal operatorUniqueness0101 mathematicsAnisotropyMathematical PhysicsMathematicsX-ray transformgeophysicsApplied Mathematics010102 general mathematicsMathematical analysisgeofysiikkaShear wave splittingInverse problemFunctional Analysis (math.FA)Geophysics (physics.geo-ph)Computer Science ApplicationsMathematics - Functional Analysis010101 applied mathematicsMathematics - Classical Analysis and ODEsSignal ProcessingInverse Problems
researchProduct

Uniqueness of positive radial solutions to singular critical growth quasilinear elliptic equations

2015

In this paper, we prove that there exists at most one positive radial weak solution to the following quasilinear elliptic equation with singular critical growth \[ \begin{cases} -\Delta_{p}u-{\displaystyle \frac{\mu}{|x|^{p}}|u|^{p-2}u}{\displaystyle =\frac{|u|^{\frac{(N-s)p}{N-p}-2}u}{|x|^{s}}}+\lambda|u|^{p-2}u & \text{in }B,\\ u=0 & \text{on }\partial B, \end{cases} \] where $B$ is an open finite ball in $\mathbb{R}^{N}$ centered at the origin, $1<p<N$, $-\infty<\mu<((N-p)/p)^{p}$, $0\le s<p$ and $\lambda\in\mathbb{R}$. A related limiting problem is also considered.

General MathematicsWeak solutionta111010102 general mathematicsMathematical analysisuniquenessPohozaev identity01 natural sciences010101 applied mathematicsElliptic curveMathematics - Analysis of PDEspositive radial solutionsSingular solutionFOS: Mathematicssingular critical growthquasilinear elliptic equationsasymptotic behaviorsUniqueness0101 mathematics35A24 35B33 35B40 35J75 35J92Analysis of PDEs (math.AP)MathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Recovery of time-dependent coefficients from boundary data for hyperbolic equations

2019

We study uniqueness of the recovery of a time-dependent magnetic vector-valued potential and an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet to Neumann map of a hyperbolic equation. The Cauchy data is observed on time-like parts of the space-time boundary and uniqueness is proved up to the natural gauge for the problem. The proof is based on Gaussian beams and inversion of the light ray transform on Lorentzian manifolds under the assumptions that the Lorentzian manifold is a product of a Riemannian manifold with a time interval and that the geodesic ray transform is invertible on the Riemannian manifold.

GeodesicDirichlet-to-Neumann maplight ray transformmagnetic potentialBoundary (topology)CALDERON PROBLEM01 natural sciencesGaussian beamMathematics - Analysis of PDEsFOS: Mathematics111 Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Uniqueness0101 mathematicsMathematics::Symplectic GeometryMathematical PhysicsMathematicsX-ray transformSTABILITYinverse problemsMathematical analysisStatistical and Nonlinear PhysicsRiemannian manifoldX-RAY TRANSFORMWave equationMathematics::Geometric TopologyManifoldTENSOR-FIELDS010101 applied mathematicsUNIQUE CONTINUATIONGeometry and TopologyMathematics::Differential GeometryWAVE-EQUATIONSHyperbolic partial differential equationAnalysis of PDEs (math.AP)
researchProduct

A radiation condition for the 2-D Helmholtz equation in stratified media

2009

We study the 2-D Helmholtz equation in perturbed stratified media, allowing the existence of guided waves. Our assumptions on the perturbing and source terms are not too restrictive. We prove two results. Firstly, we introduce a Sommerfeld-Rellich radiation condition and prove the uniqueness of the solution for the studied equation. Then, by careful asymptotic estimates, we prove the existence of a bounded solution satisfying our radiation condition.

Helmholtz equationApplied MathematicsMathematical analysisEquazioni alle derivate parzialiSommerfeld radiation conditionRadiationMathematics - Analysis of PDEs35J05Bounded functionFOS: Mathematics35J05; 78A40UniquenessCondizione di radiazione78A40AnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Monotonicity and local uniqueness for the Helmholtz equation

2017

This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation $(\Delta + k^2 q) u = 0$ in a bounded domain for fixed non-resonance frequency $k>0$ and real-valued scattering coefficient function $q$. We show a monotonicity relation between the scattering coefficient $q$ and the local Neumann-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-based characterization of scatterers from partial boundary data. We also obtain the local…

Helmholtz equationMathematics::Number Theorylocalized potentialsBoundary (topology)Monotonic function01 natural sciencesDomain (mathematical analysis)inversio-ongelmat35R30 35J05symbols.namesakeMathematics - Analysis of PDEs35J050103 physical sciencesFOS: MathematicsUniquenessHelmholtz equation0101 mathematicsinverse coefficient problemsEigenvalues and eigenvectorsMathematicsNumerical AnalysisApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Spectral Theorymonotonicitystationary Schrödinger equation35R30Helmholtz free energyBounded functionsymbols010307 mathematical physicsmonotonicity localized potentialsAnalysisAnalysis of PDEs (math.AP)
researchProduct