Search results for "unique"
showing 10 items of 268 documents
A Fisher–Kolmogorov equation with finite speed of propagation
2010
Abstract In this paper we study a Fisher–Kolmogorov type equation with a flux limited diffusion term and we prove the existence and uniqueness of finite speed moving fronts and the existence of some explicit solutions in a particular regime of the equation.
Delayed chronic intracranial subdural hematoma complicating resection of a tanycytic thoracic ependymoma
2015
Background To demonstrate that the diagnosis of an intracranial subdural hematoma should be considered for patients presenting with acute or delayed symptoms of intracranial pathology following resection of a spinal tumor. Case description We present a case of a 57-year-old woman found to have a chronic subdural hematoma 1 month following resection of a thoracic extramedullary ependymoma. Evacuation of the hematoma through a burr hole relieved the presenting symptoms and signs. Resolution of the hematoma was confirmed with a computed tomography (CT) scan. Conclusion Headache and other symptoms not referable to spinal pathology should be regarded as a warning sign of an intracranial subdural…
Existence and uniqueness of solution to several kinds of differential equations using the coincidence theory
2015
The purpose of this article is to study the existence of a coincidence point for two mappings defined on a nonempty set and taking values on a Banach space using the fixed point theory for nonexpansive mappings. Moreover, this type of results will be applied to obtain the existence of solutions for some classes of ordinary differential equations. Ministerio de Economía y Competitividad Junta de Andalucía
A cubic defining algebra for the Links–Gould polynomial
2013
Abstract We define a finite-dimensional cubic quotient of the group algebra of the braid group, endowed with a (essentially unique) Markov trace which affords the Links–Gould invariant of knots and links. We investigate several of its properties, and state several conjectures about its structure.
Notice of Violation of IEEE Publication Principles: Distributed Multimedia Digital Libraries on Peer-to-Peer Networks
2007
This paper presents an original approach to image sharing in large, distributed digital libraries, in which a user is able to interactively search interesting resources by means of content-based image retrieval techniques. The approach described here addresses the issues arising when the content is managed through a peer-to-peer architecture. In this case, the retrieval facilities are likely to be limited to queries based on unique identifiers or small sets of keywords, which may be quite inadequate, so we propose a novel algorithm for routing user queries that exploits compact representations of multimedia resources shared by each peer in order to dynamically adapt the network topology to …
Unique continuation of the normal operator of the x-ray transform and applications in geophysics
2020
We show that the normal operator of the X-ray transform in $\mathbb{R}^d$, $d\geq 2$, has a unique continuation property in the class of compactly supported distributions. This immediately implies uniqueness for the X-ray tomography problem with partial data and generalizes some earlier results to higher dimensions. Our proof also gives a unique continuation property for certain Riesz potentials in the space of rapidly decreasing distributions. We present applications to local and global seismology. These include linearized travel time tomography with half-local data and global tomography based on shear wave splitting in a weakly anisotropic elastic medium.
Uniqueness of positive radial solutions to singular critical growth quasilinear elliptic equations
2015
In this paper, we prove that there exists at most one positive radial weak solution to the following quasilinear elliptic equation with singular critical growth \[ \begin{cases} -\Delta_{p}u-{\displaystyle \frac{\mu}{|x|^{p}}|u|^{p-2}u}{\displaystyle =\frac{|u|^{\frac{(N-s)p}{N-p}-2}u}{|x|^{s}}}+\lambda|u|^{p-2}u & \text{in }B,\\ u=0 & \text{on }\partial B, \end{cases} \] where $B$ is an open finite ball in $\mathbb{R}^{N}$ centered at the origin, $1<p<N$, $-\infty<\mu<((N-p)/p)^{p}$, $0\le s<p$ and $\lambda\in\mathbb{R}$. A related limiting problem is also considered.
Recovery of time-dependent coefficients from boundary data for hyperbolic equations
2019
We study uniqueness of the recovery of a time-dependent magnetic vector-valued potential and an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet to Neumann map of a hyperbolic equation. The Cauchy data is observed on time-like parts of the space-time boundary and uniqueness is proved up to the natural gauge for the problem. The proof is based on Gaussian beams and inversion of the light ray transform on Lorentzian manifolds under the assumptions that the Lorentzian manifold is a product of a Riemannian manifold with a time interval and that the geodesic ray transform is invertible on the Riemannian manifold.
A radiation condition for the 2-D Helmholtz equation in stratified media
2009
We study the 2-D Helmholtz equation in perturbed stratified media, allowing the existence of guided waves. Our assumptions on the perturbing and source terms are not too restrictive. We prove two results. Firstly, we introduce a Sommerfeld-Rellich radiation condition and prove the uniqueness of the solution for the studied equation. Then, by careful asymptotic estimates, we prove the existence of a bounded solution satisfying our radiation condition.
Monotonicity and local uniqueness for the Helmholtz equation
2017
This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation $(\Delta + k^2 q) u = 0$ in a bounded domain for fixed non-resonance frequency $k>0$ and real-valued scattering coefficient function $q$. We show a monotonicity relation between the scattering coefficient $q$ and the local Neumann-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-based characterization of scatterers from partial boundary data. We also obtain the local…