Search results for "video processing"

showing 10 items of 56 documents

Industrial video sequences for network performance evaluation

2005

The analysis of video traffic characteristics plays a fundamental role in the evaluation of network performance or schedule design. However, the majority of these analyses are based on the study of traffic characteristics generated with different codifiers on typical general purpose films or sequences. These are generally made using asymmetric codifiers which are not usable in live real-time multimedia transmission systems. Moreover, the properties of these sequences are not necessarily equivalent to those obtained in an industrial environment. In this paper industrial monitoring video sequences are presented, describing their various characteristics, from the point of view of the source as…

ScheduleGeneral purposePoint (typography)Computer sciencemedia_common.quotation_subjectReal-time computingNetwork performanceQuality (business)Video sequenceVideo processingUSablemedia_common
researchProduct

Video indexing using optical flow field

2002

The increasing development of advanced multimedia applications requires new technologies for organizing and retrieving by content databases of digital video. Several content based features (color, texture, motion, etc.) are needed to perform a reliable content based retrieval. We present a method for automatic motion based video indexing and retrieval. A prototypal system has been developed to prove the validity of our approach. Our system automatically splits a video into a sequence of shots, extracts a few representative frames (said r-frames) from each shot and computes some motion based features related to the optical flow field. Motion based queries are then performed either in a quali…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniMotion compensationbusiness.industryComputer scienceSearch engine indexingDigital videoFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONOptical flowImage segmentationVideo processingElectronic mailVideo indexing motion analysisMotion estimationComputer visionArtificial intelligencebusinessBlock-matching algorithm
researchProduct

Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval

2016

Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for being implemented into operational biophysical variable retrieval schemes. However, they face difficulties in coping with large training data sets. With the increasing amount of optical remote sensing data made available for analysis and the possibility of using a large amount of simulated data from radiative transfer models (RTMs) to train kernel MLRAs, efficient data reduction techniques will need to be implemented. Active learning (AL) methods enable to select the most informative samples in a data set. This letter introduces six AL methods for achieving optimized biophysical variable estimat…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesComputer scienceActive learning (machine learning)Computer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition0211 other engineering and technologies02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesData modelingSet (abstract data type)Kernel (linear algebra)FOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Signal ProcessingElectrical and Electronic Engineering021101 geological & geomatics engineering0105 earth and related environmental sciencesTraining setbusiness.industryImage and Video Processing (eess.IV)Sampling (statistics)Electrical Engineering and Systems Science - Image and Video ProcessingGeotechnical Engineering and Engineering GeologyData setKernel (statistics)Data miningArtificial intelligencebusinesscomputerIEEE Geoscience and Remote Sensing Letters
researchProduct

Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization

2016

Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesHyperspectral imagingComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesNormalization (image processing)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesLaboratory of Geo-information Science and Remote SensingComputer vision910 Geography & travelMathematicsDomain adaptationContextual image classificationImage and Video Processing (eess.IV)1903 Computers in Earth SciencesPE&RCClassificationAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel method10122 Institute of GeographyKernel (image processing)Feature extractionFeature extractionVery high resolutionGraph-based methods1706 Computer Science ApplicationsFOS: Electrical engineering electronic engineering information engineeringLaboratorium voor Geo-informatiekunde en Remote SensingComputers in Earth SciencesElectrical Engineering and Systems Science - Signal ProcessingEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingManifold alignmentbusiness.industryNonlinear dimensionality reductionHistogram matchingKernel methodsPattern recognitionElectrical Engineering and Systems Science - Image and Video ProcessingManifold learningArtificial intelligence2201 Engineering (miscellaneous)businessISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Versatile optimization-based speed-up method for autofocusing in digital holographic microscopy

2021

We propose a speed-up method for the in-focus plane detection in digital holographic microscopy that can be applied to a broad class of autofocusing algorithms that involve repetitive propagation of an object wave to various axial locations to decide the in-focus position. The classical autofocusing algorithms apply a uniform search strategy, i.e., they probe multiple, uniformly distributed axial locations, which leads to heavy computational overhead. Our method substantially reduces the computational load, without sacrificing the accuracy, by skillfully selecting the next location to investigate, which results in a decreased total number of probed propagation distances. This is achieved by…

SpeedupOptimization problemComputer sciencePlane (geometry)business.industryImage and Video Processing (eess.IV)FOS: Physical sciencesÒpticaElectrical Engineering and Systems Science - Image and Video ProcessingQuantitative Biology - Quantitative MethodsAtomic and Molecular Physics and OpticsThree dimensional imagingOpticsPosition (vector)FOS: Biological sciencesObject waveFOS: Electrical engineering electronic engineering information engineeringDigital holographic microscopySuccessive parabolic interpolationbusinessAlgorithmQuantitative Methods (q-bio.QM)Physics - OpticsOptics (physics.optics)
researchProduct

Hardware-accelerated spike train generation for neuromorphic image and video processing

2014

Recent studies concerning Spiking Neural Networks show that they are a powerful tool for multiple applications as pattern recognition, image tracking, and detection tasks. The basic functional properties of SNN reside in the use of spike information encoding as the neurons are specifically designed and trained using spike trains. We present a novel and efficient frequency encoding algorithm with Gabor-like receptive fields using probabilistic methods and targeted to FPGA for online pro-cessing. The proposed encoding is versatile, modular and, when applied to images, it is able to perform simple image transforms as edge detection, spot detection or removal, and Gabor-like filtering without a…

Spiking neural networkComputer sciencebusiness.industrySpike trainImage processingVideo processingEdge detectionNeuromorphic engineeringEncoding (memory)Computer visionSpike (software development)Artificial intelligencebusinessComputer hardware2014 IX Southern Conference on Programmable Logic (SPL)
researchProduct

Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes

2019

The availability of satellite optical information is often hampered by the natural presence of clouds, which can be problematic for many applications. Persistent clouds over agricultural fields can mask key stages of crop growth, leading to unreliable yield predictions. Synthetic Aperture Radar (SAR) provides all-weather imagery which can potentially overcome this limitation, but given its high and distinct sensitivity to different surface properties, the fusion of SAR and optical data still remains an open challenge. In this work, we propose the use of Multi-Output Gaussian Process (MOGP) regression, a machine learning technique that learns automatically the statistical relationships among…

Synthetic aperture radarFOS: Computer and information sciencesComputer Science - Machine LearningTeledetecció010504 meteorology & atmospheric sciencesMean squared error0208 environmental biotechnologySoil ScienceFOS: Physical sciencesMachine Learning (stat.ML)02 engineering and technology01 natural sciencesArticlelaw.inventionMachine Learning (cs.LG)symbols.namesakelawStatistics - Machine LearningFOS: Electrical engineering electronic engineering information engineeringComputers in Earth SciencesRadarLeaf area indexCluster analysisGaussian process0105 earth and related environmental sciencesRemote sensingMathematicsImage and Video Processing (eess.IV)Processos estocàsticsGeologyElectrical Engineering and Systems Science - Image and Video ProcessingSensor fusionRegression020801 environmental engineeringPhysics - Data Analysis Statistics and ProbabilitysymbolsData Analysis Statistics and Probability (physics.data-an)Imatges Processament
researchProduct

Real-Time Photoplethysmography Imaging System

2011

Real-time non-contact photoplethysmography imaging (PPGI) system for high-resolution blood perfusion mapping in human skin has been proposed. The PPGI system comprises of LED lamp, webcam and computer with video processing software. The purpose of this study is to evaluate the reliability of the PPGI system when measuring blood perfusion. The validation study of PPGI and laser-Doppler perfusion imager (LDPI) was performed during local warming of palm skin. Results showed that the amplitude of PPGI increases immediately after warming and well correlated with the mean LDPI amplitude (R=0.92+-0.03, p<0.0001). We found that PPGI technique has good potential for non-contact monitoring of blood p…

Validation studyComputer sciencePhotoplethysmogramVideo processingReliability (statistics)Biomedical engineering
researchProduct

Application of LSTM architectures for next frame forecasting in Sentinel-1 images time series

2020

L'analyse prédictive permet d'estimer les tendances des évènements futurs. De nos jours, les algorithmes Deep Learning permettent de faire de bonnes prédictions. Cependant, pour chaque type de problème donné, il est nécessaire de choisir l'architecture optimale. Dans cet article, les modèles Stack-LSTM, CNN-LSTM et ConvLSTM sont appliqués à une série temporelle d'images radar sentinel-1, le but étant de prédire la prochaine occurrence dans une séquence. Les résultats expérimentaux évalués à l'aide des indicateurs de performance tels que le RMSE et le MAE, le temps de traitement et l'index de similarité SSIM, montrent que chacune des trois architectures peut produire de bons résultats en fon…

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]FOS: Computer and information sciencesApprentissage profondComputer Science - Machine LearningImage and Video Processing (eess.IV)[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]PrévisionComputer Science - Neural and Evolutionary ComputingDeep Learning AlgorithmsPrédiction[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]Electrical Engineering and Systems Science - Image and Video ProcessingLand cover change[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Machine Learning (cs.LG)SARIMA[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]FOS: Electrical engineering electronic engineering information engineeringSatellite imagesNeural and Evolutionary Computing (cs.NE)LSTMPredictionForecastingImages satellitaires
researchProduct

hidden markov random fields and cuckoo search method for medical image segmentation

2020

Segmentation of medical images is an essential part in the process of diagnostics. Physicians require an automatic, robust and valid results. Hidden Markov Random Fields (HMRF) provide powerful model. This latter models the segmentation problem as the minimization of an energy function. Cuckoo search (CS) algorithm is one of the recent nature-inspired meta-heuristic algorithms. It has shown its efficiency in many engineering optimization problems. In this paper, we use three cuckoo search algorithm to achieve medical image segmentation.

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]FOS: Computer and information sciencesComputer Science - Machine LearningComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)FOS: Electrical engineering electronic engineering information engineeringComputer Science - Computer Vision and Pattern RecognitionElectrical Engineering and Systems Science - Image and Video Processing[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Machine Learning (cs.LG)
researchProduct