Search results for "virulence"

showing 10 items of 457 documents

Laurel extracts inhibit quorum sensing, virulence factors and biofilm of foodborne pathogens

2020

Antimicrobial, antibiofilm, anti-Quorum sensing (QS) and virulence factors inhibitory capacity of different polarity Laurus nobilis extracts against several pathogenic microorganisms were studied. Some extracts exhibited antibiotic effect against Staphylococcus aureus multidrug-resistant strains. However, all extracts (100 µg/mL) inhibited to some extent the biofilm of most bacteria tested (until 40% for Gram-negative and 76% for Gram-positive). Hexane (HE) and chloroform extract (CE) were potent inhibitors of S. aureus biofilm and the microscopies further confirmed an important reduction in adherent cells. Polystyrene surfaces coated with these extracts showed a decrease in bacterial adhes…

0106 biological sciencesPYOCYANINVirulenceSwarming motilitymedicine.disease_cause01 natural sciencesMicrobiology//purl.org/becyt/ford/1 [https]chemistry.chemical_compound0404 agricultural biotechnologyPyocyanin010608 biotechnologymedicine//purl.org/becyt/ford/1.6 [https]biologyENZYME INHIBITIONPseudomonas aeruginosaChemistryBiofilm04 agricultural and veterinary sciencesbiology.organism_classification040401 food scienceSWARMINGQuorum sensingStaphylococcus aureusBIOFILMBacteriaFATTY ACIDSFood Science
researchProduct

Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system.

2014

10 pages; International audience; Host resources can drive the optimal parasite exploitation strategy by offering a good or a poor environment to pathogens. Hosts living in resource-rich habitats might offer a favourable environment to developing parasites because they provide a wealth of resources. However, hosts living in resource-rich habitats might afford a higher investment into costly immune defences providing an effective barrier against infection. Understanding how parasites can adapt to hosts living in habitats of different quality is a major challenge in the light of the current human-driven environmental changes. We studied the role of nutritional resources as a source of phenoty…

0106 biological sciencesPlasmodiumCanariesPopulationNutritional StatusParasitemiaBiologyParasitemia010603 evolutionary biology01 natural sciencesPlasmodium[SDV.MP.PRO]Life Sciences [q-bio]/Microbiology and Parasitology/Protistology03 medical and health sciencesenvironmental variationAvian malariamedicine[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsParasite hostingeducationEcology Evolution Behavior and Systematics030304 developmental biology2. Zero hunger0303 health scienceseducation.field_of_study[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEcologyHost (biology)Plasmodium relictum[ SDV.MP.PRO ] Life Sciences [q-bio]/Microbiology and Parasitology/Protistologymedicine.diseasebiology.organism_classificationAnimal Feedhost-parasite interactionPlasmodium relictumDietMalariaObligate parasitevirulencenutritionavian malariaAnimal Nutritional Physiological PhenomenaAnimal Science and Zoology[SDE.BE]Environmental Sciences/Biodiversity and Ecologypathogen[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Cold water reduces the severity of parasite-inflicted damage : support for wintertime recuperation in aquatic hosts

2019

The reduction in host fitness caused by parasite infections (virulence) depends on infection intensity and the degree of damage caused per parasite. Environmental conditions can shape both virulence components, but in contrast to infection intensity, environmental impacts on per-parasite damage are poorly understood. Here, we studied the effect of ambient temperature on per-parasite damage, which is jointly determined by the ability of parasites to induce harm (per-parasite pathogenicity) and the ability of hosts to limit damage (tolerance). We experimentally exposed two salmonid species, Atlantic salmon (Salmo salar) and sea trout (Salmo trutta), to replicated genotypes of the eye fluke Di…

0106 biological sciencesPost exposureTroutSalmo salarsalmonidZoologyVirulence010603 evolutionary biology01 natural sciencesParasite loadinfektiotHost-Parasite InteractionstrematodeFish DiseasesloisetSea troutParasite hostingAnimalsParasitesSalmoEcology Evolution Behavior and SystematicssietokykytolerancebiologyHost (biology)010604 marine biology & hydrobiologyimumadotvirulenssilohikalatWatertemperaturebiology.organism_classificationkalatauditvirulenceWarm waterlämpötilaTrematoda
researchProduct

The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants

2011

Summary Botrytis cinerea is a major pre- and post-harvest necrotrophic pathogen with a broad host range that causes substantial crop losses. The plant hormone jasmonic acid (JA) is involved in the basal resistance against this fungus. Despite basal resistance, virulent strains of B. cinerea can cause disease on Arabidopsis thaliana and virulent pathogens can interfere with the metabolism of the host in a way to facilitate infection of the plant. However, plant genes that are required by the pathogen for infection remain poorly described. To find such genes, we have compared the changes in gene expression induced in A. thaliana by JA with those induced after B. cinerea using genome-wide micr…

0106 biological sciencesRegulation of gene expression0303 health sciencesbiologyJasmonic acidfungifood and beveragesVirulenceCell BiologyPlant SciencePlant disease resistancebiology.organism_classification01 natural sciencesMicrobiology03 medical and health scienceschemistry.chemical_compoundchemistryGeneticsArabidopsis thalianaPlant hormonePathogen030304 developmental biology010606 plant biology & botanyBotrytis cinereaThe Plant Journal
researchProduct

Variation and covariation in infectivity, virulence and immunodepression in the host-parasite association Gammarus pulex-Pomphorhynchus laevis.

2009

Parasites often manipulate host immunity for their own benefit, either by exacerbating or suppressing the immune response and this may directly affect the expression of parasite virulence. However, genetic variation in immunodepression, which is a prerequisite to its evolution, and the relationship between immunodepression and virulence, have rarely been studied. Here, we investigated the variation among sibships of the acanthocephalan parasite, Pomphorhynchus laevis , in infecting and in immunodepressing its amphipod host, Gammarus pulex . We also assessed the covariation between infectivity, parasite-induced immune depression and host mortality (parasite virulence). We found that infecti…

0106 biological sciencesVirulencephenoloxidaseparasite-induced immunodepression[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyMicrobiologyAcanthocephalaHost-Parasite Interactions03 medical and health sciencesImmune systemRiversImmunityResearch articlesImmune Tolerance[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisParasite hostingAnimalsAmphipoda030304 developmental biologyGeneral Environmental ScienceInfectivity0303 health sciences[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyGeneral Immunology and MicrobiologybiologycovariationHost (biology)Monophenol MonooxygenaseGeneral Medicinebiology.organism_classificationSurvival Analysis3. Good healthacanthocephalanvirulenceGammarus pulex[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyImmunologyimmune defencesPomphorhynchus laevisFrance[SDE.BE]Environmental Sciences/Biodiversity and EcologyGeneral Agricultural and Biological Sciences[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Social interactions modulate the virulence of avian malaria infection

2013

There is an increasing understanding of the context-dependent nature of parasite virulence. Variation in parasite virulence can occur when infected individuals compete with conspecifics that vary in infection status; virulence may be higher when competing with uninfected competitors. In vertebrates with social hierarchies, we propose that these competition-mediated costs of infection may also vary with social status. Dominant individuals have greater competitive ability than competing subordinates, and consequently may pay a lower prevalence-mediated cost of infection. In this study we investigated whether costs of malarial infection were affected by the occurrence of the parasite in compet…

0106 biological sciences[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyCanariesMalaria Avianmedia_common.quotation_subjectVirulenceParasitismZoology010603 evolutionary biology01 natural sciencesCompetition (biology)03 medical and health sciences[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseasesAvian malaria[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosismedicineAnimalsParasite hostingInterpersonal Relations[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology030304 developmental biologymedia_commonSocial stress[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology0303 health sciencesBehavior AnimalCompetitionVirulenceSGS1biologySocial stressEcologyPlasmodium relictumbiology.organism_classificationmedicine.diseaseSurvival AnalysisPlasmodium relictum3. Good healthGroup livingSocial rank[ SDV.MHEP.MI ] Life Sciences [q-bio]/Human health and pathology/Infectious diseasesInfectious DiseasesHematocritAvian malariaParasitology[SDE.BE]Environmental Sciences/Biodiversity and Ecology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisSocial statusInternational Journal for Parasitology
researchProduct

Immunity and Virulence in Bird-Parasite Interactions.

2010

8 pages; International audience; The interaction between hosts and parasites is characterized by the evolution of reciproca adaptations aiming at reducing the cost of infection (from the host point of view) and to optimize host exploitation (from the parasite point of view). Within this co-evolutionary scenario, the immune system takes a central role. The immune system has evolved to fight off parasitic attacks. However, immune defences cannot be deployed without costs which set a limit to the protective effect of immunity. Moreover, immune defences impose strong selection pressures on the parasite and can favour the evolution of more virulent pathogen strains. In this article, we will disc…

0106 biological sciences[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyVirulenceBiology[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology010603 evolutionary biology01 natural sciencesimmune response03 medical and health sciencesImmune systemImmunityImmunopathology[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisParasite hostingimmunopathology[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyPathogenCoevolution030304 developmental biology0303 health sciences[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyHost (biology)biochemical phenomena metabolism and nutritioninfectionvirulence[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyEvolutionary biologyImmunologybacteriaAnimal Science and Zoology[SDE.BE]Environmental Sciences/Biodiversity and Ecology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisCoevolution
researchProduct

Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence.

2010

10 pages; International audience; Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these…

0106 biological sciences[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/Parasitologymulti-parasitized hostsmedia_common.quotation_subjectEcology (disciplines)Virulenceinterspecies transmissionBiologyModels Biological010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyCompetition (biology)Host-Parasite InteractionsInterspecies transmission03 medical and health sciencesParasitic Diseases[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsParasite hostingParasites[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyReview Articles030304 developmental biologyGeneral Environmental Sciencemedia_common0303 health sciences[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyVirulenceGeneral Immunology and MicrobiologyEcologyTransmission (medicine)Host (biology)General MedicineBiological EvolutionObligate parasiteimmune systemEvolutionary biologymulti-host parasitesintrahost competitionepidemiology[SDE.BE]Environmental Sciences/Biodiversity and EcologyGeneral Agricultural and Biological Sciences[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus

2019

Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV …

0106 biological sciencesinfection matrixPopulationPotyvirusVirulenceMetapopulation010603 evolutionary biology01 natural sciencesMicrobiology03 medical and health sciencesVirologyPlant virusTurnip mosaic virusResistance to infectionexperimental evolutioneducationPathogenhost population structure030304 developmental biologyvirus evolution0303 health sciencesExperimental evolutioneducation.field_of_studyGenetic diversitybiologyEcotypeGenetic heterogeneityEvolution of virulenceHost population structureresistance to infectionbiology.organism_classificationInfection matrixVirus evolutionExperimental evolutionInfectious disease (medical specialty)Evolutionary biologyViral evolutionResearch Articleevolution of virulence
researchProduct

Predation on Multiple Trophic Levels Shapes the Evolution of Pathogen Virulence

2009

The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded o…

0106 biological scienceslcsh:MedicineVirulenceZoologyEvolutionary Biology/Evolutionary Ecology010603 evolutionary biology01 natural sciencesPredationMicrobiologyTetrahymena thermophila03 medical and health sciencesParasemia plantaginisEcology/Evolutionary Ecologylcsh:SciencePathogenSerratia marcescensTrophic level0303 health sciencesLarvaMultidisciplinarybiologyVirulence030306 microbiologyHost (biology)lcsh:R15. Life on landbiology.organism_classificationEvolutionary Biology/Microbial Evolution and GenomicsSerratia marcescensHost-Pathogen Interactionslcsh:QResearch ArticlePLoS ONE
researchProduct