Search results for "viruse"

showing 10 items of 1185 documents

Membrane-Associated Enteroviruses Undergo Intercellular Transmission as Pools of Sibling Viral Genomes

2019

Summary Some viruses are released from cells as pools of membrane-associated virions. By increasing the multiplicity of infection (MOI), this type of collective dispersal could favor viral cooperation, but also the emergence of cheater-like viruses such as defective interfering particles. To better understand this process, we examined the genetic diversity of membrane-associated coxsackievirus infectious units. We find that infected cells release membranous structures (including vesicles) that contain 8–21 infectious particles on average. However, in most cases (62%–93%), these structures do not promote the co-transmission of different viral genetic variants present in a cell. Furthermore, …

0301 basic medicinevirusesPopulationViral transmissionGenome ViralBiologyCoxsackievirusmedicine.disease_causeGenomeArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicineMultiplicity of infectionMicroscopy Electron TransmissionmedicineHumanseducationlcsh:QH301-705.5social evolutionCollective infectious unitEnterovirusGeneticsSocial evolutionGenetic diversityeducation.field_of_studyenteroviruscollective infectious unitTransmission (medicine)viral transmissionCell MembraneVirionGenetic VariationVirus InternalizationExtracellular vesiclesbiology.organism_classification3. Good health030104 developmental biologylcsh:Biology (General)EnterovirusBiological dispersalextracellular vesicles030217 neurology & neurosurgeryHeLa CellsCell Reports
researchProduct

A Method for Isolation of the Virome from Plasma Samples

2018

Virome studies are of special interest nowadays. Understanding viral communities in different body compartments will help guide future personalized treatments and to discern between homeostasis and disease. High-throughput sequencing technologies allow us to detect all the nucleic acids present in a sample, including viral ones, by random sequencing. One of the major challenges in virome studies is the correct isolation of the viral nucleic acids from a specific sample. This can be done during the extraction steps (e.g., enrichment of viral capsids), or during the bioinformatic analysis (e.g., removing all human and bacterial sequences). Furthermore, it is an important remark that the treat…

0301 basic medicinevirusesSample (material)RNAComputational biologyBiologyIsolation (microbiology)GenomeVirus03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryNucleic acidHuman viromeDNA
researchProduct

Protoparvovirus Knocking at the Nuclear Door

2017

Protoparvoviruses target the nucleus due to their dependence on the cellular reproduction machinery during the replication and expression of their single-stranded DNA genome. In recent years, our understanding of the multistep process of the capsid nuclear import has improved, and led to the discovery of unique viral nuclear entry strategies. Preceded by endosomal transport, endosomal escape and microtubule-mediated movement to the vicinity of the nuclear envelope, the protoparvoviruses interact with the nuclear pore complexes. The capsids are transported actively across the nuclear pore complexes using nuclear import receptors. The nuclear import is sometimes accompanied by structural chan…

0301 basic medicinevirusesimportinsActive Transport Cell Nucleuslcsh:QR1-502Genome ViralReviewImportinKaryopherinsBiologyVirus Replicationlcsh:MicrobiologyParvovirusMice03 medical and health sciencesCapsidVirologynuclear pore complexmedicineAnimalsHumansInner membraneNuclear poreprotoparvovirusCell Nucleusnuclear localization sequence030102 biochemistry & molecular biologyta1182nuclear envelopeVirus InternalizationVirologynuclear importCell biologyCell nucleusnuclear envelope break down030104 developmental biologyInfectious Diseasesmedicine.anatomical_structureintracellular dynamicsEndosomal transportNuclear PoreentryCapsid ProteinsNucleoporinNuclear transportNuclear localization sequenceViruses
researchProduct

A Bimolecular Multicellular Complementation System for the Detection of Syncytium Formation: A New Methodology for the Identification of Nipah Virus …

2019

Fusion of viral and cellular membranes is a key step during the viral life cycle. Enveloped viruses trigger this process by means of specialized viral proteins expressed on their surface, the so-called viral fusion proteins. There are multiple assays to analyze the viral entry including those that focus on the cell-cell fusion induced by some viral proteins. These methods often rely on the identification of multinucleated cells (syncytium) as a result of cell membrane fusions. In this manuscript, we describe a novel methodology for the study of cell-cell fusion. Our approach, named Bimolecular Multicellular Complementation (BiMuC), provides an adjustable platform to qualitatively and quanti…

0301 basic medicinevirusesmembrane fusionlcsh:QR1-502virusNipah virusBiologyGiant Cells01 natural scienceslcsh:MicrobiologySmall Molecule Libraries03 medical and health sciencesVirus entryViral envelopeViral life cycleViral entryVirologyDrug DiscoveryHumansSyncytiumDrug discoveryBrief ReportbiomolèculesHigh-throughput screeningLipid bilayer fusionVirus InternalizationFusion proteinHigh-Throughput Screening Assays0104 chemical sciencesCell biologyBimolecular complementation010404 medicinal & biomolecular chemistryMulticellular organismHEK293 Cells030104 developmental biologyInfectious DiseasesViruses
researchProduct

Human Phageprints: A high-resolution exploration of oral phages reveals globally-distributed phage families with individual-specific and temporally-s…

2019

AbstractMetagenomic studies have revolutionized the study of novel phages. However these studies trade the depth of coverage for breadth. In this study we show that the targeted sequencing of a phage genomic region as small as 200-300 base pairs, can provide sufficient sequence diversity to serve as an individual-specific barcode or “Phageprint”. The targeted approach reveals a high-resolution view of phage communities that is not available through metagenomic datasets. By creating instructional videos and collection kits, we enabled citizen scientists to gather ∼700 oral samples spanning ∼100 individuals residing in different parts of the world. In examining phage communities at 6 differen…

0303 health sciences03 medical and health sciencesCommunity composition030306 microbiologyEvolutionary biologyMetagenomicsvirusesBiologyIdentical twins030304 developmental biology
researchProduct

2019

Viruses frequently spread among cells or hosts in groups, with multiple viral genomes inside the same infectious unit. These collective infectious units can consist of multiple viral genomes inside the same virion, or multiple virions inside a larger structure such as a vesicle. Collective infectious units deliver multiple viral genomes to the same cell simultaneously, which can have important implications for viral pathogenesis, antiviral resistance, and social evolution. However, little is known about why some viruses transmit in collective infectious units, whereas others do not. We used a simple evolutionary approach to model the potential costs and benefits of transmitting in a collect…

0303 health sciencesCancer Research030306 microbiologyvirusesViral pathogenesisAntiviral resistanceBiologyVirologyGenome03 medical and health sciencesInfectious DiseasesMultiplicity of infectionViral replicationViral genomesVirologyViral evolution030304 developmental biologyVirus Research
researchProduct

2021

Parvoviruses are small single-stranded (ss) DNA viruses, which replicate in the nucleoplasm and affect both the structure and function of the nucleus. The nuclear stage of the parvovirus life cycle starts at the nuclear entry of incoming capsids and culminates in the successful passage of progeny capsids out of the nucleus. In this review, we will present past, current, and future microscopy and biochemical techniques and demonstrate their potential in revealing the dynamics and molecular interactions in the intranuclear processes of parvovirus infection. In particular, a number of advanced techniques will be presented for the detection of infection-induced changes, such as DNA modification…

0303 health sciencesMolecular interactionsNucleoplasmbiologyParvovirusviruses030302 biochemistry & molecular biologyParvovirus infectionbiology.organism_classificationmedicine.diseaseCell biology03 medical and health scienceschemistry.chemical_compoundInfectious Diseasesmedicine.anatomical_structureCapsidchemistryVirologyDNA ModificationmedicineNucleusDNA030304 developmental biologyViruses
researchProduct

2020

We report that several viruses from the human enterovirus group B cause massive vimentin rearrangements during lytic infection. Comprehensive studies suggested that viral protein synthesis was triggering the vimentin rearrangements. Blocking the host cell vimentin dynamics with β, β'-iminodipropionitrile (IDPN) did not significantly affect the production of progeny viruses and only moderately lowered the synthesis of structural proteins such as VP1. In contrast, the synthesis of the nonstructural proteins 2A, 3C, and 3D was drastically lowered. This led to attenuation of the cleavage of the host cell substrates PABP and G3BP1 and reduced caspase activation, leading to prolonged cell surviva…

0303 health sciencesProteasesbiology030306 microbiologyViral nonstructural proteinvirusesImmunologyVimentinMicrobiologyHsp90Virus3. Good healthCell biology03 medical and health sciencesCapsidLytic cycleCytoplasmVirologyInsect Sciencebiology.protein030304 developmental biologyJournal of Virology
researchProduct

Five Challenges in the Field of Viral Diversity and Evolution

2021

Viral diversity and evolution play a central role in processes such as disease emergence, vaccine failure, drug resistance, and virulence. However, significant challenges remain to better understand and manage these processes. Here, we discuss five of these challenges. These include improving our ability to predict viral evolution, developing more relevant experimental evolutionary systems, integrating viral dynamics and evolution at different scales, more thoroughly characterizing the virosphere, and deepening our understanding of virus-virus interactions. Intensifying future research on these areas should improve our ability to combat viral diseases, as well as to more efficiently use vir…

0303 health sciencesViral metagenomicsExperimental evolutionField (physics)030306 microbiologymedia_common.quotation_subjectvirusesGeneral MedicineBiology3. Good health03 medical and health sciencesEvolutionary biologyViral evolutioninternationalPlan_S-Compliant_OA030304 developmental biologyDiversity (politics)media_commonFrontiers in Virology
researchProduct

2020

ObjectiveThe HBV HBx regulatory protein is required for transcription from the covalently closed circular DNA (cccDNA) minichromosome and affects the epigenetic control of both viral and host cellular chromatin.DesignWe explored, in relevant cellular models of HBV replication, the functional consequences of HBx interaction with DLEU2, a long non-coding RNA (lncRNA) expressed in the liver and increased in human hepatocellular carcinoma (HCC), in the regulation of host target genes and the HBV cccDNA.ResultsWe show that HBx binds the promoter region, enhances the transcription and induces the accumulation of DLEU2 in infected hepatocytes. We found that nuclear DLEU2 directly binds HBx and the…

0303 health sciencesvirusesEZH2GastroenterologyRepressorPromotermacromolecular substancescccDNABiologydigestive system diseases3. Good healthChromatinCell biology03 medical and health sciencesHBx0302 clinical medicineTranscription (biology)030220 oncology & carcinogenesisHistone methyltransferase030304 developmental biologyGut
researchProduct