Search results for "xanthophylls"

showing 10 items of 22 documents

Neurosporaxanthin Overproduction by Fusarium fujikuroi and Evaluation of Its Antioxidant Properties

2020

17 Páginas.-- 5 Figuras

0106 biological sciences0301 basic medicineFusariumAntioxidantPhysiologymedicine.medical_treatmentClinical BiochemistryMutantquenchingfree radicalsFree radicalsXanthophylls01 natural sciencesBiochemistryNeurospora03 medical and health sciencesQuenching010608 biotechnologymedicineoxidative stressMolecular BiologyCarotenoidMyceliumchemistry.chemical_classificationbiologyChemistrylcsh:RM1-950carotenoidsFungifood and beveragesCell Biologybiology.organism_classificationCarotenoidslcsh:Therapeutics. Pharmacology030104 developmental biologyBiochemistryOxidative stressXanthophyllLiposomesGibberellinfungixanthophyllsAntioxidants
researchProduct

Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca).

2010

Carotenoids in the egg yolks of birds are considered to be important antioxidants and immune stimulants during the rapid growth of embryos. Yolk carotenoid composition is strongly affected by the carotenoid composition of the female’s diet at the time of egg formation. Spatial and temporal differences in carotenoid availability may thus be reflected in yolk concentrations. To assess whether yolk carotenoid concentrations or carotenoid profiles show any large-scale geographical trends or differences among habitats, we collected yolk samples from 16 European populations of the pied flycatcher, Ficedula hypoleuca. We found that the concentrations and proportions of lutein and some other xantho…

0106 biological sciencesLuteinRange (biology)Maternal effectsPopulation DynamicsBreedingXanthophylls01 natural sciencesAntioxidantsTreesSongbirdschemistry.chemical_compoundEgg antioxidantspolycyclic compoundsCarotenoidLepidoptera larvaechemistry.chemical_classification0303 health scienceseducation.field_of_studyPrincipal Component AnalysisbiologyGeographyEcologyfood and beveragesbeta CaroteneEgg YolkZeaxanthinEuropeembryonic structuresFemaleTree phenologyfood.ingredientFood ChainPopulation010603 evolutionary biologyInsectivorous birds03 medical and health sciencesfoodYolkAnimalseducationEcology Evolution Behavior and Systematics030304 developmental biologyorganic chemicalsLuteinFicedula15. Life on landbiology.organism_classificationCarotenoidsbiological factorsDietchemistryXanthophyllPhysiological ecology - Original PaperOecologia
researchProduct

Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants?

2006

SUMMARY Carotenoid-based signals are thought to be indicators of male quality because they must be obtained from the diet and might thus indicate the ability of individuals to gather high-quality food. However, carotenoids are also known to have important physiological functions as immunoenhancers and antioxidants, and, as such, carotenoid-based sexual traits have also been suggested to reflect the health and antioxidant status of their bearers. This last idea is based on the hypothesis that carotenoids that are allocated to sexual signals are no longer available for the detoxification system. Recently, this hypothesis has been challenged on the grounds that the antioxidant activity is not …

0106 biological sciencesMaleAntioxidantPhysiologymedicine.medical_treatmentMESH: Random AllocationMESH : LuteinMESH: BeakXanthophylls01 natural sciencesAntioxidantsRandom Allocationpolycyclic compounds[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH: AnimalsFood scienceMESH : FinchesCarotenoidMESH: MelatoninMelatoninchemistry.chemical_classification0303 health sciencesSex CharacteristicsbiologyMESH : MelatoninPigmentationMESH : PigmentationBeakfood and beveragesPasserinecarotenoïdsBiochemistryMESH : AntioxidantsMESH : XanthophyllsMESH: Finchesmedicine.drugMESH: Sex CharacteristicsoxidationMESH : Malefree radicalsmacromolecular substances[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAquatic ScienceMESH: Lutein010603 evolutionary biologyMESH: PigmentationMESH : Random AllocationMelatonin03 medical and health sciencessexual advertisementZeaxanthinsbiology.animalmedicineAnimalsMolecular BiologyZebra finchEcology Evolution Behavior and Systematics030304 developmental biologyMESH : Carotenoidsorganic chemicalsMESH: Antioxidantszebra finchLuteinMESH : Sex Characteristics[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMESH: XanthophyllsCarotenoidsMESH: Malebiological factorsMESH : BeakchemistryInsect ScienceMESH: CarotenoidsAnimal Science and ZoologyMESH : AnimalsFinches[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisThe Journal of experimental biology
researchProduct

A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosy…

2017

The epoxy-xanthophylls antheraxanthin and violaxanthin are key precursors of light-harvesting carotenoids and participate in the photoprotective xanthophyll cycle. Thus, the invention of zeaxanthin epoxidase (ZEP) catalyzing their formation from zeaxanthin has been a fundamental step in the evolution of photosynthetic eukaryotes. ZEP genes have only been found in Viridiplantae and chromalveolate algae with secondary plastids of red algal ancestry, suggesting that ZEP evolved in the Viridiplantae and spread to chromalveolates by lateral gene transfer. By searching publicly available sequence data from eleven red algae covering all currently recognized red algal classes we identified ZEP cand…

0301 basic medicineZeaxanthin epoxidasePlant ScienceXanthophyllsGenes Plant03 medical and health scienceschemistry.chemical_compoundBotanyGeneticsViridiplantaePlastidPhotosynthesisPhylogenychemistry.chemical_classificationbiologyAntheraxanthinCell Biologybiology.organism_classificationBiological EvolutionZeaxanthin030104 developmental biologychemistryPhotoprotectionXanthophyllRhodophytabiology.proteinOxidoreductasesMetabolic Networks and PathwaysViolaxanthinThe Plant journal : for cell and molecular biology
researchProduct

Cardioprotective effects of phytopigments via multiple signaling pathways.

2021

Abstract Background Cardiovascular diseases (CVDs) are among the deadliest non-communicable diseases, and millions of dollars are spent every year to combat CVDs. Unfortunately, the multifactorial etiology of CVDs complicates the development of efficient therapeutics. Interestingly, phytopigments show significant pleiotropic cardioprotective effects both in vitro and in vivo. Purpose This review gives an overview of the cardioprotective effects of phytopigments based on in vitro and in vivo studies as well as clinical trials. Methods A literature-based survey was performed to collect the available data on cardioprotective activities of phytopigments via electronic search engines such as Pub…

Cardiotonic AgentsPharmaceutical ScienceAnthraquinonesXanthophyllsBioinformaticsstatAntioxidantsAnthocyaninsDrug DiscoveryMedicineAnimalsHumansClinical efficacyProtein kinase BPharmacologyFlavonoidsbusiness.industryNF-kappa BAMPKCarotenoidsClinical trialComplementary and alternative medicineCardiotoxicitiesCardiac hypertrophyMolecular MedicineSignal transductionbusinessSignal TransductionPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Pigment binding of photosystem I light-harvesting proteins.

2002

Light-harvesting complexes (LHC) of higher plants are composed of at least 10 different proteins. Despite their pronounced amino acid sequence homology, the LHC of photosystem II show differences in pigment binding that are interpreted in terms of partly different functions. By contrast, there is only scarce knowledge about the pigment composition of LHC of photosystem I, and consequently no concept of potentially different functions of the various LHCI exists. For better insight into this issue, we isolated native LHCI-730 and LHCI-680. Pigment analyses revealed that LHCI-730 binds more chlorophyll and violaxanthin than LHCI-680. For the first time all LHCI complexes are now available in t…

ChlorophyllChlorophyll aPhotosystem IIPigment bindingPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesBiologyXanthophyllsPhotosystem IBiochemistrychemistry.chemical_compoundPigmentSolanum lycopersicumMolecular BiologyP700Binding SitesPhotosystem I Protein ComplexChlorophyll Afood and beveragesPhotosystem II Protein ComplexCell BiologyPigments Biologicalbeta CarotenePlant LeavesSpectrometry FluorescencechemistryBiochemistryChlorophyllvisual_artvisual_art.visual_art_mediumViolaxanthinThe Journal of biological chemistry
researchProduct

Carotenoid binding sites in LHCIIb

2000

The major light-harvesting complex of photosystem II can be reconstituted in vitro from its bacterially expressed apoprotein with chlorophylls a and b and neoxanthin, violaxanthin, lutein, or zeaxanthin as the only xanthophyll. Reconstitution of these one-carotenoid complexes requires low-stringency conditions during complex formation and isolation. Neoxanthin complexes (containing 30–50% of the all-trans isomer) disintegrate during electrophoresis, exhibit a largely reduced resistance against proteolytic attack; in addition, energy transfer from Chl b to Chl a is easily disrupted at elevated temperature. Complexes reconstituted in the presence of either zeaxanthin or lutein contain nearly …

ChlorophyllLuteinPhotosynthetic Reaction Center Complex ProteinsPigment bindingLight-Harvesting Protein ComplexesXanthophyllsBiologyBinding CompetitiveBiochemistrySubstrate SpecificityLight-harvesting complexchemistry.chemical_compoundNeoxanthinZeaxanthinsTrypsinProtein PrecursorsCarotenoidPlant Proteinschemistry.chemical_classificationBinding SitesChlorophyll ALuteinPhotosystem II Protein Complexfood and beveragesPigments BiologicalPlantsbeta CaroteneCarotenoidseye diseasesZeaxanthinEnergy TransferchemistryBiochemistryXanthophyllElectrophoresis Polyacrylamide GelApoproteinsViolaxanthinEuropean Journal of Biochemistry
researchProduct

De-epoxidation of Violaxanthin in Light-harvesting Complex I Proteins

2004

The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx wa…

ChlorophyllLuteinPhotosystem IIPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesXanthophyllsPhotosystem IThylakoidsBiochemistrychemistry.chemical_compoundSolanum lycopersicumSpinacia oleraceaEscherichia coliMolecular BiologyPhotosystemchemistry.chemical_classificationBinding SitesPhotosystem I Protein ComplexChemistryfood and beveragesPigments BiologicalCell Biologybeta CaroteneRecombinant ProteinsChloroplastKineticsBiochemistryXanthophyllThylakoidEpoxy CompoundsApoproteinsViolaxanthinJournal of Biological Chemistry
researchProduct

The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cyc…

2005

The present study focuses on the regulation of diatoxanthin (Dtx) epoxidation in the diadinoxanthin (Ddx) cycle containing algae Phaeodactylum tricornutum, Thalassiosira pseudonana, Cyclotella meneghiniana and Prymnesium parvum and its significance for the control of the photosystem II (PS II) antenna function. Our data show that Dtx epoxidase can exhibit extremely high activities when algal cells are transferred from high light (HL) to low light (LL). Under HL conditions, Dtx epoxidation is strongly inhibited by the light-driven proton gradient. Uncoupling of the cells during HL illumination restores the high epoxidation rates observed during LL. In Ddx cycle containing algae, non-photoche…

DiatomsPhotosystem IIbiologyLightPhysiologyZeaxanthin epoxidaseAlgal ProteinsDiadinoxanthinDiatoxanthinEukaryotaPhotosystem II Protein ComplexPlant ScienceHydrogen-Ion ConcentrationXanthophyllsPhotochemistrychemistry.chemical_compoundchemistryPhotoprotectionbiology.proteinElectrochemical gradientChlorella vulgarisOxidoreductasesAgronomy and Crop ScienceChlorophyll fluorescenceViolaxanthinJournal of plant physiology
researchProduct

In Vitro Bioactivity of Astaxanthin and Peptides from Hydrolisates of Shrimp (Parapenaeus longirostris) By-Products: From the Extraction Process to B…

2021

Non-edible parts of crustaceans could be a rich source of valuable bioactive compounds such as the carotenoid astaxanthin and peptides, which have well-recognized beneficial effects. These compounds are widely used in nutraceuticals and pharmaceuticals, and their market is rapidly growing, suggesting the need to find alternative sources. The aim of this work was to set up a pilot-scale protocol for the reutilization of by-products of processed shrimp, in order to address the utilization of this valuable biomass for nutraceutical and pharmaceuticals application, through the extraction of astaxanthin-enriched oil and antioxidant-rich protein hydrolysates. Astaxanthin (AST) was obtained using …

Fish ProteinsFood Handlingantioxidant activityPharmaceutical ScienceAngiotensin-Converting Enzyme InhibitorsPilot ProjectsXanthophyllsfish oilArticleAntioxidantsMicechemistry.chemical_compoundNutraceuticalPenaeidaeprotein hydrolysatesAstaxanthinDrug Discoveryshrimp by-productsAnimalsHumansFood sciencelcsh:QH301-705.5Pharmacology Toxicology and Pharmaceutics (miscellaneous)ShellfishWaste Productschemistry.chemical_classificationHydrolysisExtraction (chemistry)Proteolytic enzymesSupercritical fluid extractionFatty acidChromatography Supercritical FluidGreen Chemistry Technology3T3 Cellsproteolytic enzymesFibroblastsShrimpastaxanthinOxidative Stresslcsh:Biology (General)chemistrySPDsupercritical fluid extractionRabbitsPeptidesPUFAPolyunsaturated fatty acidMarine Drugs
researchProduct