Search results for "zero-field"

showing 4 items of 4 documents

Chemical Reaction Monitoring Using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers

2020

Abstract We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero‐field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two‐step hydrogenation of dimethyl acetylenedicarboxylate with para‐enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero‐field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heteroge…

Chemical substanceMaterials scienceHydrogenAnalytical chemistrychemistry.chemical_element010402 general chemistry01 natural sciencesChemical reaction7. Clean energyCatalysisNMR spectroscopyHyperpolarization (physics)Research Articleshyperpolarization010405 organic chemistryReaction MonitoringGeneral MedicineGeneral ChemistryNuclear magnetic resonance spectroscopyequipment and suppliesMagnetic susceptibility0104 chemical sciencesMagnetic fieldzero-fieldchemistryddc:540Electromagnetic shieldingResearch Article
researchProduct

Slow Magnetic Relaxation in a Co (II)–Y (III) Single‐Ion Magnet with Positive Axial Zero‐Field Splitting

2013

This work was supported by the MINECO (Spain) (Project CTQ2011-24478), the Junta de Andalucía (FQM-195 and Project of excellence P08-FQM-03705), and the University of Granada. E.R. and E.Cr. thank MINECO grant No. CTQ2011-23862-C02-01 and Generalitat de Catalunya grant No. 2009SGR-1459, for financial support. We would like to thank Prof. Liviu Chibotaru for providing us the SINGLE_ANISO program and Dr. Andrew Ozarowski for the EPR simulation software. E.K.B. thanks the EPSRC and Leverhulme Trust for financial support. The NHMFL is funded by the NSF, DoE, and the state of Florida. J.C. acknowledges financial support by the Spanish Ministerio de Ciencia e Innovación through projects CTQ2010-1…

DYNAMICSModels Molecularpositive zero-field splittingINSchemistry.chemical_elementZero field splitting010402 general chemistry01 natural sciences7. Clean energyCatalysisO ligandsMOLECULE MAGNETNuclear magnetic resonancesingle ion magnetsYttriumMagnetic relaxationCompartmental ligandAnisotropyHYSTERESISComputingMilieux_MISCELLANEOUSANISOTROPY[PHYS]Physics [physics]IonsMolecular StructureCondensed matter physicsSingle ion010405 organic chemistryChemistryCobaltGeneral ChemistryYttriumNBARRIERcobaltCo(II)FAMILY0104 chemical sciencesyttriumHysteresisPositive axial ZFSDYSPROSIUM(III)TBMagnetic FieldsMagnetMagnetsSingle ion magnetCOMPLEXESCobaltBEHAVIOR
researchProduct

Two-dimensional single- and multiple-quantum correlation spectroscopy in zero-field nuclear magnetic resonance.

2020

We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero ($<\!\!1$~$\mu$G) magnetic field using a \Rb vapor-cell magnetometer. At zero field the spectrum of ethanol appears as a mixture of \carbon isotopomers, and correlation spectroscopy is useful in separating the two composite spectra. We also identify and observe the zero-field equivalent of a double-quantum transition in ${}^{13}$C$_2$-acetic acid, and show that such transitions are of use in spectral assignment. Two-dimensional spectroscopy further improves the high resolution attained in zero-field NMR since selection rules on the coherence-transfer pathways allow for the separation of otherwise overlappi…

Nuclear and High Energy PhysicsZero field NMRMagnetometerNuclear Magnetic Resonancephysics.chem-phBiophysicsFOS: Physical sciences010402 general chemistry01 natural sciencesBiochemistryMolecular physicsSpectral line030218 nuclear medicine & medical imagingIsotopomerslaw.invention03 medical and health sciences0302 clinical medicineEngineeringquant-phlawPhysics - Chemical PhysicsJ-Spectroscopy2D NMRSpectroscopyPhysicsChemical Physics (physics.chem-ph)Quantum PhysicsCorrelation spectroscopyZero (complex analysis)Zero-field NMRCondensed Matter PhysicsMultiple-quantum NMR3. Good health0104 chemical sciencesMagnetic fieldZULF NMRPhysical SciencesQuantum Physics (quant-ph)Two-dimensional nuclear magnetic resonance spectroscopy
researchProduct

Zero-field nuclear magnetic resonance spectroscopy of viscous liquids

2014

Abstract We report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin–spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity. Quantum chemical calculations have been used to obtain the relative stability and coupling constants of all ethylene glycol conformers. The results show the potential of zero-field NMR as a probe of molecular structure and dynamics in a wide range of environments, including viscous fluids.

Nuclear and High Energy PhysicsZero field NMRzero-field NMRBiophysicsAnalytical chemistryNMR spectroscopy; low field nmr; Density functional calculationsViscous liquidBiochemistrychemistry.chemical_compoundViscosityMolecular dynamicsNMR spectroscopyMoleculePhysics::Chemical Physicsdensity functional theoryCoupling constantlow field nmrtechnology industry and agricultureZero-field NMRNuclear magnetic resonance spectroscopyviscous liquidsCondensed Matter PhysicsScalar couplingDensity functional calculationschemistryChemical physicsDensity functional theoryscalar couplingEthylene glycolViscous liquidsJournal of Magnetic Resonance
researchProduct