0000000000002065

AUTHOR

V. Arcoleo

showing 10 related works from this author

Study of lecithin reverse micelles by FT-IR spectroscopy

2007

FT-IR spectra of water/lecithin/deuterated cyclohexane microemulsions as a function of water/lecithin molar ratio R (R=[water]/[lecithin]) at various lecithin volume fractions (φ) have been recorded. After elimination of the spectral contributions due to the deuterated cyclohexane and normalization, the band parameters of the CO and PO4 vibrational modes due to lecithin have been found dependent only upon R. This behaviour has been interpreted in terms of a progressive structural modification of the water/lecithin interface superimposed to the progressive hydration of CO and PO4 groups. Moreover, no correlation between the CO and PO4 band parameters and the formation of gel-like micellar so…

food.ingredientCyclohexaneChemistryAnalytical chemistryInfrared spectroscopyLecithinMicelleCycloalkanechemistry.chemical_compoundfoodDeuteriumMicellar solutionsOrganic chemistryMicroemulsion
researchProduct

Structural and dynamical investigation of gelation containing water-in-oil microemulsions

1996

The gelatin (Bloom 300)/water/AOT/n-heptane system has been investigated at fixed water/AOT molar ratioR (R=31.1) as a function of the gelatin content. Several experimental techniques (densitometry, refractometry, conductometry, rheology, dielectrometry, ultrasonics, hypersonics) have been used to investigate the role played by the gelatin molecule in the observed sol-gel transition above a critical gelatin content. The results appear consistent with the hypothesis of a rigid network of gelatin-water rods coated by surfactant molecules coexisting with gelatin-free AOT reversed micelles at the gelation point.

Chromatographyfood.ingredientPolymers and PlasticsConductometryChemistryConcentration effectMicelleGelatinColloid and Surface ChemistryfoodRheologyChemical engineeringPulmonary surfactantMaterials ChemistryMicroemulsionPhysical and Theoretical ChemistryRefractometryColloid and Polymer Science
researchProduct

Calorimetric investigation of the interaction between a macromolecular prodrug of diflunisal and human platelets

1995

The thermal effect due to the interaction between human platelets and α,β poly(N-hydroxy-ethyl)-DL-aspartamide (PHEA) or the PHEA-Diflunisal conjugate was measured by the calorimetric technique at 25°C. The experimental data confirm that PHEA is a biocompatible macromolecule and that its conjugate influences the physiological activity of human platelets.

Macromolecular prodrugsStereochemistryChemistryThermal effectBiophysicsmedicineDiflunisalPlateletProdrugIn vitroMacromoleculemedicine.drugConjugateJournal of thermal analysis
researchProduct

Electrical conductivity and permittivity of water-AOT-n-heptane microemulsions

1995

Measurements of the electrical conductivity and of the complex permittivity of water-sodium bis(2-ethylhexyl) sulfosuccinate (AOT)-n-heptane microemulsions are reported. The experimental results are rationalized in terms of a hopping mechanism of AOT anions within clusters of reversed micelles. The dependence of the hopping rate and of the cluster dimensions upon the ratio [water]/[AOT] and temperature is discussed.

chemistry.chemical_classificationPermittivityAlkaneHeptaneBiophysicsAnalytical chemistryConductivityBiochemistryMicellechemistry.chemical_compoundHydrocarbonchemistryElectrical resistivity and conductivityOrganic chemistryMicroemulsionPhysical and Theoretical ChemistryMolecular BiologyJournal of Solution Chemistry
researchProduct

Calorimetric investigation on the formation of palladium nanoparticles in water/AOT/n-heptane microemulsions

1995

The formation enthalpy of palladium nanoparticles in water/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)n-heptane microemulsions as a function of the waterAOT molar ratio (R = [water][AOT]) was measured by a calorimetric technique. The results indicate that at R < 10 the energetic state of the palladium nanoparticles compartmentalized within the reversed AOT micelles is signficantly different from that in bulk water. Effects due to the small size of the palladium nanoparticles and to interactions between nanoparticles and the waterAOT interface are discussed.

HeptaneTernary numeral systemChemistryEnthalpyNanoparticlechemistry.chemical_elementCalorimetryCondensed Matter PhysicsMicellechemistry.chemical_compoundPhysical chemistryMicroemulsionPhysical and Theoretical ChemistryInstrumentationPalladiumThermochimica Acta
researchProduct

Physico-chemical characterization of Pd nanoparticles synthesized in w/o microemulsions

1998

Abstract The long time stability of surfactant-coated Pd nanoparticles in w/o microemulsions has been investigated. It has been proven that in suitable conditions, the use of the functionalized surfactant Pd(AOT)2 allows to obtain very stable nanosized Pd particles and to finely control their average size.

Materials scienceNanostructureSmall-angle X-ray scatteringBioengineeringNanotechnologyCharacterization (materials science)BiomaterialsChemical engineeringPulmonary surfactantMechanics of MaterialsTransmission electron microscopyPd nanoparticlesParticleMicroemulsionMaterials Science and Engineering: C
researchProduct

Physicochemical Properties of Copper(II) Bis(2-ethylhexyl) Sulfosuccinate Reversed Micelles

1998

Abstract Measurements of some physicochemical properties (density, viscosity, conductance, UV–vis spectra, IR spectra) of the water/copper(II) bis(2-ethylhexyl) sulfosuccinate (Cu(DEHSS) 2 )/CCl 4 microemulsions, at a fixed surfactant molal concentration ([Cu (DEHSS) 2 ] = 0.05003 mol kg −1 ), as function of the molar ratio R ( R = [water]/[DEHSS − ]) have been performed at 25°C. Information on some structural and dynamical properties of the water-containing Cu(DEHSS) 2 reversed micelles and of their evolution with R are derived from the experimental results. The comparison with the same properties of water-containing sodium bis(2-ethylhexyl) sulfosuccinate reversed micelles allows to evide…

chemistry.chemical_classificationMolalityAnalytical chemistrychemistry.chemical_elementConductanceInfrared spectroscopyCopperMicelleSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialsColloid and Surface ChemistrychemistryPulmonary surfactantPhysical chemistryMicroemulsionCounterionJournal of Colloid and Interface Science
researchProduct

Calorimetric investigation of water/lecithin/cyclohexane microemulsions

1997

The enthalpies of dilution of water/lecithin/cyclohexane microemulsion-gels at variousR values (R=[water]/[lecithin]) and molar enthalpies of solution of water in lecithin/cyclohexane at a fixed lecithin concentration were determined calorimetrically at 25°C. Through a description of the process of dilution of water/lecithin/cyclohexane microemulsion-gels as one involving mainly the scission of lecithin reversed micelles in to smaller ones, the concentration dependence of the enthalpy was rationalized. Surprisingly, in order to account for the dilution enthalpies, it was not necessary to hypothesize a thermal effect arising from the breakage of the micellar network present in the micremulsi…

Aggregation numberfood.ingredientCyclohexaneEnthalpyThermodynamicsLecithinMicelleDilutionchemistry.chemical_compoundCycloalkanefoodchemistryOrganic chemistryMicroemulsionJournal of thermal analysis
researchProduct

Calorimetric investigation of the formation of ZnS nanoparticles in w/o microemulsions

1998

The enthalpies of precipitation of ZnS nanoparticles within water containing reversed micelles of sodium bis(2-ethylhexyl) solfosuccinate, L-α phosphatidylcholine, tetraethyleneglycol-mono-n-dodecyl ether and didodecyldimethylammonium bromide as a function of the molar concentration ratioR (R=[water]/[surfactant]) were measured by calorimetric technique. The results indicate that the energetic state of ZnS nanoparticles confined in the aqueous core of the reversed micelles is different from that in bulk water. Effects due to nanoparticle size, adsorption of HS− ions on the nanoparticle surface and interactions between nanoparticles and water/surfactant interfaces are discussed.

Molar concentrationAdsorptionAqueous solutionPulmonary surfactantChemistryPrecipitation (chemistry)Inorganic chemistryNanoparticleMicroemulsionPhysical and Theoretical ChemistryCondensed Matter PhysicsMicelleJournal of Thermal Analysis and Calorimetry
researchProduct

Study of AOT-stabilized microemulsions of formamide and n-methylformamide dispersed in n-heptane

1997

Abstract A wide investigation of some physicochemical properties (density, viscosity, conductance, IR spectra, permittivity) of AOT-stabilized dispersions of formamide and n -methylformamide in n -heptane has been performed. The experimental data are consistent with the hypothesis that these highly hydrophilic substances are encapsulated within AOT reversed micelles and that this structure is maintained for both systems well above the volume fraction of the dispersed phase where a percolative transition occurs. In addition, the observed properties of these microemulsions reveal the pivotal role of intermicellar attractive interactions in driving the percolative transition. A marked modifica…

FormamideHeptaneChemistryInfrared spectroscopyBioengineeringN-MethylformamideMicelleBiomaterialschemistry.chemical_compoundMechanics of MaterialsPhase (matter)Volume fractionOrganic chemistryPhysical chemistryMicroemulsionMaterials Science and Engineering: C
researchProduct