0000000000003713

AUTHOR

Davide Campanella

Experimental Comparison of the MIG and Friction Stir Welding Processes for AA 6005 Aluminium Alloy

In this study, the mechanical properties of welded joints of AA 6005 aluminum alloy obtained with friction stir welding (FSW) and conventional metal inert gas welding (MIG) are studied. FSW welds were carried out on a semi-automatic milling machine. The performance of FSW and MIG welded joints were identified using tensile and bending impact tests, as far as the environmental aspects are also included in the discussion. The joints obtained with FSW and MIG processes were also investigated in their microstructure. The results indicate that, the microstructure of the friction stir weld is different from that of MIG welded joint. The weld nugget consists of small grains in FSW than those found…

research product

Experimental and Numerical Study on Linear Friction Welding of AA2011 Aluminum Alloy

Linear Friction Welding (LFW) is a solid-state joining process used for non-axisymmetric components. LFW involves joining of materials through the relative motion of two components undergoing an axial force. In the process, the heat source is given by the frictional forces work decaying into heat and determining a local softening of the material and eventually the needed bonding conditions. In the paper, an experimental and numerical campaign is proposed for AA2011 aluminum alloys welding. Different case studies are considered with fixed oscillation frequency and varying pressure at the interface between the specimens. Constant oscillation amplitude and specimens geometry is used. The calcu…

research product

Al-SiC Metal Matrix Composite production through Friction Stir Extrusion of aluminum chips

Abstract The production of most mechanical component requires machining operation, thus usually implying the cut material to be wasted as scrap. Traditional recycling techniques are not able to efficiently recycle metal chips because of some critical aspects that characterize such kind of scraps (shape, oxide layers, contaminating residues, etc). Friction Stir Extrusion is an innovative solid state direct-recycling technique for metal machining chips. During the process, a rotating tool is plunged into a hollows matrix to compact, stir and finally, back extrudes the chips to be recycled in a full dense rod. This process results to be particularly relevant since no preliminary treatment of t…

research product

Improving Formability in SPIF Processes through High Speed Rotating Tool: Experimental and Numerical Analysis

Single-point incremental forming (SPIF) is a quite new sheet-forming process which offers the possibility to deform complex parts without dedicated dies using a single-point tool and a standard three-axis CNC machine. Although the process mechanics enables higher strains with respect to traditional sheet-forming processes, research has been focused on further increasing the maximum forming angle. In the paper, a new approach is used to enhance the material formability through a localized sheet heating as a consequence of the friction work caused by high speed rotating tool. Numerical simulation was utilized to relate the effect of temperature with the main field variables distribution in th…

research product

Residual stress and material flow prediction in Friction Stir Welding of Gr2 Titanium T-joints

Friction Stir Welding is nowadays an established technique successfully used by many industries. However, most of the research and, consequently, most of the applications regard aluminum alloys and butt joints. T-joints are of high interest for different industrial sectors as aeronautical, aerospace, naval and ground transportation, for which joint integrity and low residual stress are extremely important. In this study, an experimental and numerical approach is proposed with the aim to study the peculiarities of the residual stress distribution and material flow occurring in FSW of CP-Ti T-joints. Experiments were carried out to assess the feasibility of the process and to acquire the temp…

research product

Modelling Aspects in Accumulative Roll Bonding process by Explicit Finite Element Analysis

Accumulative Roll-Bonding (ARB) process is a severe plastic deformation (SPD) process, capable of developing grains below 1 μm in diameter and improving mechanical properties of the material. In this study, the authors compared two different FE-codes with respect of its applicability for numerical analysis of the ARB process. Modelling this process was achieved using the explicit code for Abaqus/CAE both in 2D and 3D. The proposed model was used to assess the impact of ARB cycles on the final material properties. The numerical results in 2D and 3D were compared and contrasted. The research work presented in this paper is focused on the simulation optimization based on CPU time minimization.…

research product

On the improvement of material formability in SPIF operation through tool stirring action

Single-point incremental forming (SPIF) is a quite new sheet-forming process which offers the possibility to deform complex parts without dedicated dies using a single-point tool and a standard three-axis CNC machine. The process mechanics enables higher strains with respect to traditional sheet-forming processes, but particular attention must be given to the maximum forming angle. In this paper, a new approach is proposed to enhance the material formability through a localized sheet heating as a consequence of the friction work caused by elevated tool rotational speeds. AA1050-O, AA1050-H24, and AA6082-T6 were utilized, and the reached temperatures were recorded by thermocouples, fixed to …

research product

On the Solid Bonding Phenomena in Linear Friction Welding and Accumulative Roll Bonding Processes: Numerical Simulation Insights

Solid Bonding based welding processes allow to obtain defect free joints with low residual stress and low distortion. However, the engineering and optimization of solid bonding processes is difficult and requires a large number of time and cost consuming test trials. In this way, proper numerical models are essential tools permitting effective process design. The aim of this research was the comparison of the material process conditions during two different manufacturing processes taking advantage of the same metallurgical phenomenon, namely solid bonding. Linear Friction Welding, used to weld non-axisymmetric components and Accumulative Roll Bonding, used to increase the mechanical propert…

research product

Dissimilar titanium-aluminum skin-stringer joints by FSW: process mechanics and performance

Ever since its inception, friction stir welding (FSW) is being validated by scientific investigations as an effective substitution for fusion-based conventional joining technologies. One of the main strengths of FSW is the possibility to produce dissimilar joints, even using materials extremely different in terms of thermal and mechanical properties. The goal of the present research is to investigate the feasibility of both Al-Ti skin-stringer and reversed Ti-Al skin-stringer joints, highlighting the effect of joint configuration and main process parameters on material flow and joint mechanical properties. During the investigation, the essentiality of the proper heat input through balancing

research product

Weld quality prediction in linear friction welding of AA6082-T6 through an integrated numerical tool

Abstract A numerical and an experimental campaign were carried out with varying oscillation frequency and interface pressure. The local values of the main field variables at the contact interface between the specimens were predicted by a Lagrangian, implicit, thermo-mechanical FEM model and used as input of a dedicated Neural Network (NN). The NN, integrated in the FEM environment, was designed in order to calculate both a Boolean output, indicating the occurrence of welding, and a continuous output, indicating the quality of the obtained solid state weld. The analysis of the obtained results allowed three different levels of bonding quality, i.e., no weld, sound weld and excess of heat, to…

research product

On the Solid Bonding Phenomena in Linear Friction Welding and Accumulative Roll Bonding Processes: Numerical Simulation Insights

Solid Bonding based welding processes allow to obtain defect free joints with low residual stress and low distortion. However, the engineering and optimization of solid bonding processes is difficult and requires a large number of time and cost consuming test trials. In this way, proper numerical models are essential tools permitting effective process design. The aim of this research was the comparison of the material process conditions during two different manufacturing processes taking advantage of the same metallurgical phenomenon, namely solid bonding. Linear Friction Welding, used to weld non-axisymmetric components and Accumulative Roll Bonding, used to increase the mechanical propert…

research product

Constant Heat Input Friction Stir Welding of Variable Thickness AZ31 Sheets Through In-Process Tool Rotation Control

Tailored blanks characterized by variable thickness were friction stir welded (FSWed) with the aim to obtain constant joint properties along the weld seam, regardless of the thickness change. To pursue this goal, the heat input was kept constant by in-process control of tool rotation. A dedicated numerical model of the process was used to determine the tool rotation values as a function of the sheet thickness. The mechanical properties and the microstructure of the FSWed joints, produced with varying process parameters, were studied. It was found that the proposed approach can produce joints with uniform properties along the weld line in terms of stress–strain curve shape, joint strength, e…

research product

Microstructural, mechanical and energy demand characterization of alternative WAAM techniques for Al-alloy parts production

Abstract Additive manufacturing (AM) processes are gathering momentum as an alternative to conventional manufacturing processes. A research effort is being made worldwide to identify the most promising AM approaches. Within this category, wire arc additive manufacturing (WAAM) is among the most interesting, especially when large parts must be manufactured. In this paper, two different WAAM deposition techniques suitable for the deposition of Aluminum alloys, Cold Metal Transfer (CMT) and CMT mix drive, are analyzed and compared. With the aim of obtaining a clear picture concerning the two different techniques, microstructural analyses, mechanical property evaluation and electrical energy de…

research product

Friction Stir Welding of Ti6Al4V complex geometries for aeronautical applications: a feasibility study

Abstract While Friction Stir Welding (FSW) of aluminium alloys can be considered a mature technology, even for complex joint morphologies, as T joints welded “in transparency”, welding of hard material still presents several open issues. In fact, welding of titanium alloys is a challenging process due to the chemical, mechanical and thermal characteristics of such materials which are subjected to atmosphere contamination resulting in joint hydrogen, oxygen and nitrogen embrittlement; additionally, due to the high melting temperature, large distortion and residual stress are found in joints obtained by traditional fusion welding processes as gas metal arc welding, electron beam welding and l…

research product

An insight into the electrical energy demand of friction stir welding processes: the role of process parameters, material and machine tool architecture

The manufacturing sector accounts for a high share of global electrical energy consumption and CO 2 emissions, and therefore, the environmental impact of production processes is being more and more investigated. An analysis of power and energy consumption in friction stir welding processes can contribute to the characterization of the process from a new point of view and also provide useful information about the environmental impact of the process. An in-depth analysis of electrical energy demand of friction stir welding is here proposed. Different machine tool architectures, including an industrial dedicated machine, have been used to weld aluminum and steel sheets under different process …

research product

Dissimilar Al/steel Friction stir welding lap joints for automotive applications

A widespread usage of aluminum alloys for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Dissimilar welding of aluminum alloys and steel grades poses some issues concerning the formation of brittle intermetallic compounds, difference in physical and chemical properties of the parent metals, and poor wetting behavior of aluminum. Friction stir welding is considered to be a reasonable solution to obtain sound aluminum/steel joints. A study on the join quality of dissimilar lap joints of steel and aluminum alloy sheets after friction stir welding is proposed here…

research product

COMPUTER AIDED ENGINEERING OF SOLID BONDING PHENOMENA

Joining is a fundamental technological process in manufacturing used to create a single piece from two or more parts. Welding is still today one of the most popular joining techniques used in manufacturing allowing a permanent junction. Traditional welding processes are based on the melting of the materials to be joined. In this way, several defects may arise because of solidification problems, joints deformation due to elevated residual stress and metallurgical integrity of the joints (intermetallic, porosities, etc). As an example, some aluminum alloys present considerable problems the junction is carried out by traditional fusion welding methods. During the melting process, in fact, the …

research product

Mechanical and microstructural characterization of titanium gr.5 parts produced by different manufacturing routes

Abstract In recent years, the aircraft industry has shifted its preference for metal parts to titanium and its alloys, such as the high-strength Titanium Grade5 alloy. Because of Titanium Grade 5 limited formability at ambient temperature, forming operations on this material require high temperatures. In these conditions, a peculiar microstructure evolves as a result of the heating and deformation cycles, which has a significant impact on formability and product quality. On the other hand, additive manufacturing technologies, as selective laser melting and electron beam melting, are increasingly being used and are replacing more traditional approaches such as machining and forging. Fundamen…

research product

Comparison between FSW and bonded lap joints - A preliminary investigation

Difficult to weld aluminium alloys can be effectively joined by different alternative processes. Friction Stir Welding (FSW), among the solid-state processes and adhesive bonding represent two very attractive techniques. They allow the production of highly resistant joints avoiding the formation of the typical fusion weld defects. The aim of this work is to identify, analyse and compare the mechanical properties of AA6016 aluminium alloy joints made out of 1 mm thick sheets. FSW lap joints were and epoxy bonded joints were produced. Using the FSW results as benchmark, the overlap required in the bonded joint was identified to ensure the same static strength. Once the geometric configuration…

research product

A Comparative Study of Mechanical and Microstructural Behavior for Metal Active Gas and Friction Stir Welded Micro-Alloyed Structural Steel

Manufacturing tiny components into gigantic structures seems unimaginable without welding connections, whether it is for materials, parts, structures, or equipment. In the recent competitive market scenario, manufacturing industries are desperately looking for a viable alternative to fusion-based conventional material joining technologies, to improve upon cost-effectiveness along with performance. The present investigation is to evaluate the performance of structural steel thick plate joints prepared by advanced solid-state friction stir welding (FSW) over conventional metal active gas welding (MAG). The FSW experiments were carried out with different tool designs and configurations. The ou…

research product

Experimental and numerical study on Linear Friction Welding of AA2011 Aluminum Alloy

research product

Solid State Joining of Thin Hybrid Sandwiches Made of Steel and Polymer: a Feasibility Study

Abstract The growing demand for more environmentally friendly vehicles has led to an increased use of light materials in the transportation industry with the aim to reduce structural weight, fuel consumption, and gas emissions, thereby boosting cost-effectiveness and recyclable properties. Complex multi-material steel-based components would allow to improve mechanical properties and minimize weight even further. In particular, new sandwich materials made by steel outer skins and a polymeric internal layer seems very promising for obtaining mechanical performance and lightness at the same time. Unfortunately, traditional welding techniques, like arc welding, laser welding, and resistance spo…

research product

Investigations on the linear friction welding process through numerical simulations and experiments

Abstract Linear Friction Welding (LFW) is a solid-state joining process applied to non-axisymmetric components. LFW involves joining of materials through the relative motion of two components undergoing an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and eventually bonding conditions. In the paper the authors present a designed and assembled laboratory fixture for LFW operations and the results of an experimental and numerical campaign aimed to weld steel parts. The dedicated fixture permitted to highlight the effect of the most important process parameters. Process conditions allowing ef…

research product

Improving formability in SPIF processes through high speed rotating tool: experimental and numerical analysis

Single-point incremental forming (SPIF) is a quite new sheet-forming process which offers the possibility to deform complex parts without dedicated dies using a single-point tool and a standard three-axis CNC machine. Although the process mechanics enables higher strains with respect to traditional sheet-forming processes, research has been focused on further increasing the maximum forming angle. In the paper, a new approach is used to enhance the material formability through a localized sheet heating as a consequence of the friction work caused by high speed rotating tool. Numerical simulation was utilized to relate the effect of temperature with the main field variables distribution in th…

research product

Shear coefficient determination in linear friction welding of aluminum alloys

In the present study, a combined experimental and numerical investigation on Linear Friction Welding (LFW) of AA2011-T3 aluminum alloy was carried out in order to find the temperature dependent shear coefficient to be used in a 3D numerical model of the process. Torque, oscillation frequency and pressure were acquired in order to calculate the shear stress at the interface. A numerical thermal model was used to calculate the temperature at the interface between the specimens starting from experimental temperatures acquired through a thermocouple embedded in the LFW specimens. Finally, the calculated shear coefficient was used to model the contact between the two specimens in a dedicated 3D,…

research product

In-process control strategies for friction stir welding of AZ31 sheets with non-uniform thickness

Two different in-process control strategies were developed and compared with the aim to produce AZ31 magnesium alloy joints by friction stir welding on sheet blanks with a non-uniform thickness. To this purpose, sheets with dip or hump zones were welded by either changing the rotational speed or the tool plunging in order to keep constant the value of the vertical force occurring during the welding stage of the process. The influence of the main process parameters on the tool force, the micro- and macromechanical properties, and the joints microstructures in the dip and hump zones were analyzed. The results showed that using the rotational speed change-based approach, the hump zones are sub…

research product

Experimental and Numerical Analysis of Microstructure Evolution during Linear Friction Welding of Ti6Al4V

Abstract Linear Friction Welding (LFW) is a solid state welding process used to joint bulk components. In the paper, an experimental and numerical study on LFW of Ti6Al4V titanium alloy is presented. A laboratory designed LFW machine has been used to weld the specimens with different contact pressure and oscillation frequency. The joint microstructure has been experimentally observed with SEM and EDS. A dedicated numerical model, able to predict temperature, strain and strain rate distribution as well as the phase volume fraction evolution, has been utilized to predict the final microstructure in the welded parts. It was found that complete transformation of the alpha phase into beta phase …

research product

An energy efficiency analysis of Single Point Incremental Forming as an Approach for Sheet Metal Based Component Reuse

Abstract Producing materials causes about 25% of all anthropogenic CO2 emissions. Metals play a significant role, steel and aluminum account for 24% and 3% of worldwide material related emissions respectively. Fostering resources efficiency strategies in the field of sheet components could lead to a significant environmental impact reduction. Reshaping could be one of the most efficient strategy to foster material reuse and lower the environmental impact due to material production. Specifically, for aluminum recycling, the overall energy efficiency of conventional route is very low and, more importantly, permanent material losses occur during re-melting because of oxidation. The present pap…

research product

A numerical approach for the modelling of forming limits in hot incremental forming of AZ31 magnesium alloy

AbstractMagnesium alloys, because of their good specific material strength, can be considered attractive by different industry fields, as the aerospace and the automotive one. However, their use is limited by the poor formability at room temperature. In this research, a numerical approach is proposed in order to determine an analytical expression of material formability in hot incremental forming processes. The numerical model was developed using the commercial software ABAQUS/Explicit. The Johnson-Cook material model was used, and the model was validated through experimental measurements carried out using the ARAMIS system. Different geometries were considered with temperature varying in a…

research product

A novel linear friction welding based approach for sheet-bulk joining

In the last decades, the development of new, flexible manufacturing processes caused the increase of the demands for highly customized complex functional parts in many industrial fields. The peculiar design of these components often overcome conventional sheet metal and bulk metal forming processes capabilities. In order to face this issue, new hybrid techniques, capable of exploit key advantages of different processes, have to be developed. In this paper, a novel approach based on the Linear Friction Welding process is proposed to obtain sheet-bulk joints. The feasibility of the technique on high specific strength alloys is investigated through an experimental campaign.In the last decades,…

research product

On the linear friction welding process of aluminum alloys: Experimental insights through process monitoring

Abstract Linear friction welding is a solid-state joining process for non-axisymmetric components in which joining of materials is obtained through the relative motion of two components under pressure. In the process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and eventually bonding conditions. A dedicated fixture was equipped with sensors for the in-process acquisition of variables regarding kinematics, dynamics and temperature levels. The results of an experimental campaign aimed to weld AA6082-T6 aluminum alloy parts are presented and a process window is identified for the used alloy.

research product

Design of Numerical Simulations of Linear Friction Welding Processes: Issues and Difficulties

In this paper, a critical analysis of the technical difficulties and numerical issues in running simulations of linear friction welding processes is carried out. The focus of the paper is the comparison of different modeling strategies of a numerical analysis for the LFW process of Ti-6Al- 4V titanium alloy, for which the thermal aspect strongly influences the mechanical behavior due to the phase transformation, taking place over a definite range of temperature. A 3D simulation campaign, conducted using the FEA code DEFORM™, was considered in order to show advantages and disadvantages of each approach, including the most critic limitations and complexity in a correct simulation design using…

research product

Enhancement of mechanical properties of FSWed AA7075 lap joints through in-situ fabrication of MMC

Abstract Friction Stir Processing (FSP) has been demonstrated feasible to create local Metal Matrix Composites (MMCs) in light alloys matrix. In this research, local MMCs were produced contextually to the weld using Friction Stir Welding (FSW). SiC particles were added to AA7075 lap joints by creating a proper groove on the top surface of the bottom sheet. Different welds were produced with increasing number of tool passes. The effect of the multiple passes was investigated through shear tests, macro and micro observations, average grain size and microhardness measurements. The welded joints were compared to a reference weld produced with no reinforcements. It was found that poor mixing bet…

research product

Design of continuous Friction Stir Extrusion machines for metal chip recycling: issues and difficulties

Abstract Friction Stir Extrusion is an innovative direct-recycling technology developed for metal machining chips. During the process, a rotating die is plunged into a cylindrical chamber containing the material to be recycled. The stirring action of the die prompts solid bonding phenomena allowing the back extrusion of a full dense rod. One of the main weakness of this technology is the discontinuity of the process itself that limits the extrudates volume to the capacity of the chamber. In order to overcome that limitation, a dedicated extrusion fixture has to be developed, keeping into account the concurrent needs of a continuous machine. The geometry of the die has to ensure proper press…

research product

Comparative evaluation of the effect of the substrate thickness and inherent process defects on the static and fatigue performance of FSW and adhesive-bonded overlap-joints in an AA6016 alloy

Abstract This work aims at evaluating the mechanical performance of joints in an AA6016 alloy, manufactured by means of two alternative processes: friction stir welding and adhesive bonding. Given its wide use in industrial fields such as automotive and aeronautics, an overlap configuration of joints was selected for the study, and a specific method based on the overlap length evaluation has been developed to allow comparisons among the cases. Two substrate thicknesses are considered in order to vary the overall joint stiffness, and the effect of such geometrical parameter on the mechanical behavior of the joined system is experimentally investigated. The experimental findings highlight tha…

research product

In-process tool rotational speed variation with constant heat input in friction stir welding of AZ31 sheets with variable thickness

In the present work, friction stir welding experiments on AZ31 magnesium alloy sheets, characterized by a variable thickness along the welding line, were carried out. The approach adapted during welding consisted in maintaining constant the heat input to the joint. To this purpose, the rotational speed of the pin tool was increased with decreasing thickness and decreased with increasing thickness in order to obtain the same temperatures during welding. The amount by which the rotational speed was changed as a function of the sheet thickness was defined on the basis of the results given by FEM simulations of the FSW process. Finally, the effect of the in-process variation of the tool rotatio…

research product

Effective Linear Friction Welding Machine Redesign through Process Analysis

Linear friction welding is a solid-state joining process developed for non-axisymmetric components in which the joining of the specimens is obtained through reciprocating motion and pressure. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. In order to design an effective machine, relevant issues derive from the high frequency and the large inertial forces involved in the process. In this study, the authors describe the redesign of a preexisting prototypal machine for LFW processes. A machine redesign is needed when welding high resistant materials, i.e. steels or titanium alloys, with high …

research product

Application of linear friction welding for joining ultrafine grained aluminium

Abstract Ultrafine grained (UFG) materials are of great potential in industry due to their enhanced mechanical strength and other promising features, such as ability to superplastic deformation or excellent corrosion resistance. Nevertheless, one of the main limitations lies in their low thermal stability, which leads to excessive grain growth at elevated temperature. It influences mainly further processes performed at high temperature, such as joining. It causes detrimental problems during conventional fusion welding, as significant grain growth is observed and therefore the advantages as a result of small average grain size disappear. Therefore, the idea of applying solid state joining pr…

research product

Experimental and numerical investigation on a new FSW based metal to composite joining technique

Abstract In the last decades, different techniques were proposed to join aluminum sheets with composites materials. Each of them has advantages and weak points over the others and new techniques and patents are continuously developed to overcome these difficulties. In this paper an experimental and numerical investigation on a new Friction Stir Welding based approach to mechanically join AA6082-T6 to self-reinforced polypropylene is presented. The aluminum sheet is pre-holed along both the sides of the weld line and a pinless tool generates the heat and pressure needed to prompt back-extrusion of the composite. New experimental fixtures and hole designs were investigated in order to enhance…

research product

Modelling Aspects in Accumulative Roll Bonding Process by Explicit Finite Element Analysis

Accumulative Roll-Bonding (ARB) process is a severe plastic deformation (SPD) process, capable of developing grains below 1 μm in diameter and improving mechanical properties of the material. In this study, the authors compared two different FE-codes with respect of its applicability for numerical analysis of the ARB process. Modelling this process was achieved using the explicit code for Abaqus/CAE both in 2D and 3D. The proposed model was used to assess the impact of ARB cycles on the final material properties. The numerical results in 2D and 3D were compared and contrasted. The research work presented in this paper is focused on the simulation optimization based on CPU time minimization.…

research product

The role of thermal contribution in the design of AA2024 friction stir welded butt and lap joints: mechanical properties and energy demand

Although in recent times the use of solid-state welding processes as friction stir welding (FSW) has become increasingly widespread, for some joint morphologies, as lap joints, there are still signifcantly less data available on both process parameters optimization and energy consumption. In the present paper, the authors investigated the possibility of enhancing the joint quality in two diferent confgurations, i.e. lap and butt joints, taking into account specifc thermal contribution (STC) conferred to the weld. Strength, micro-hardness and microstructure were evaluated on the produced AA2024 aluminum alloys butt and lap joints. The surface response method (RSM) was used to investigate the…

research product

Mechanical and metallurgical characterization of AA6082-T6 sheet-bulk joints produced through a linear friction welding based approach

In the last decades, new flexible manufacturing processes have been developed to face the demands, by many industrial fields, for highly customized complex functional parts. The peculiar design of these components often overcomes conventional sheet metal and bulk metal forming processes capabilities. In order to face this issue, new hybrid techniques, capable of exploit key advantages of different processes, have to be developed. In this study, a method to obtain sheet-bulk joints, based on the Linear Friction Welding process, is proposed. The feasibility of the technique was investigated through an experimental campaign carried out with varying pressure and oscillation frequency using AA60…

research product

Effect of position and force tool control in friction stir welding of dissimilar aluminum-steel lap joints for automotive applications

Widespread use of aluminum alloys for the fabrication of car body parts is conditional to the use of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Friction stir welding (FSW) is considered to be a reasonable solution to obtain sound aluminum-steel joints. In this context, this work studies the effects of tool position and force control in dissimilar friction stir welding of AA6061 aluminum alloy on DC05 low carbon steel in lap joint configuration, also assessing proper welding parameter settings. Naked eye and scanning electron microscopy (SEM) have been used to detect macroscopic and microscopic defects in joints, as well as t…

research product

Infrared thermography for monitoring heat generation in a linear friction welding process of Ti6Al4V alloy

Abstract The increasing use of titanium alloys in a wider range of applications requires the development of new techniques and processes capable to decrease production costs and manufacturing times. In this regard welding and other joining techniques play an important role. Today, solid state friction joining processes, such as friction stir welding, friction spot welding, inertia friction welding, continuous-drive friction welding and linear friction welding (LFW), represent promising methods for part manufacturing. They allow for joining at temperature essentially below the melting point of the base materials being joined, without the addition of filler metal. However, the knowledge of te…

research product

Linear friction welding of dissimilar AA6082 and AA2011 aluminum alloys: microstructural characterization and design guidelines

This paper presents the results of an experimental and numerical campaign on Linear Friction Welding of dissimilar AA2011-T8 and AA6082-T6 aluminum alloys. Experimental tests were carried out with constant oscillation amplitude and process time. Varying oscillation frequency, interface pressure, specimen geometry and mutual position were used. Grain size measurements, HV tests and EDX analysis were considered to characterize the microstructure of the joints as a function of the input process parameters. A thermal numerical model was utilized to predict the temperature profiles in the joints during the process. The obtained results allowed the identification of four weld categories: sound jo…

research product

Analysis of Electrical Energy Demands in Friction Stir Welding of Aluminum Alloys

Abstract Manufacturing processes, as used for discrete part manufacturing, are responsible for a substantial part of the environmental impact of products. Despite that, most of metalworking processes are still poorly documented in terms of environmental footprint. To be more specific, the scientific research has well covered conventional machining processes, concerning the other processes there is a lack of knowledge in terms of environmental load characterization instead. The present paper aims to contribute to fill this knowledge gap and an energetic analysis of Friction Stir welding (FSW) is presented. Following the CO2PE! methodological approach, power studies and a preliminary time stu…

research product

Process mechanics in Friction Stir Extrusion of magnesium alloys chips through experiments and numerical simulation

Abstract Friction Stir Extrusion (FSE) is a novel process designed to directly recycle machining chips. An experimental campaign was carried out on AZ31 milling chips using variations in extrusion ratio, force and tool rotation rate. The process mechanics were studied and correlated to the material flow, which was elucidated through use of a copper marker. A 3D, Lagrangian, thermo-mechanically coupled dedicated numerical model was set up and validated through temperature measurements. The combination of experimental and numerical results permitted to reconstruct the complex 3D material flow induced by tool rotation and plunge into the extrusion billet chamber.

research product

Prediction of phase evolutions during friction stir welding of Ti-grade 5 T-joints using finite element modeling

Friction Stir Welding (FSW) is a solid-state welding technology pioneered by The Welding Institute (TWI) in 1991. Originally used to weld aluminum alloys, it is now effectively utilized to weld high-resistance materials as well. The ultimate mechanical characteristics of the joints are inextricably linked to the microstructural evolutions that occur during the process in terms of phase change. It is then crucial, in order to carry out an effective process engineering, to predict the final material microstructure determined by the thermal history that occurred during the process itself. In the paper, a 3D Finite Element Method (FEM) model for the FSW of T-joints is proposed, based on a therm…

research product

A two steps Lagrangian–Eulerian numerical model for the simulation of explosive welding of three dissimilar materials joints

Abstract Explosion welding (EXW) is a solid-state joining process used to produce lap joints out of metal plates of dissimilar materials. During the process, a controlled explosive detonation results in a pressure wave pushing one of the plates to be welded, called flyer, against the other with high velocity. The high pressure and temperature generated, because of the impact energy decaying into heat, create the conditions for solid bonding phenomenon to take place. Due to the complexity of experimental tests, numerical simulation is considered a fundamental design tool for the process. Different approaches are found in literature to simulate the process. In this paper, a dual step Lagrangi…

research product

Re-forming end-of-life components through single point incremental forming

Abstract Applying Circular Economy strategies is mandatory to face material demand while minimizing the environmental impact. Manufacturing processes are to be thought as means to enable material/component reuse strategies. This paper presents the suitability of Single Point Incremental Forming (SPIF) to re-form End-of-life sheet metal components. Deep drawing followed by SPIF process on aluminium alloys were carried out to simulate reforming processes chain. The resulting thinning and strain distributions were experimentally analysed for different configurations. The research proves that the local action and enhanced formability nature of SPIF allow non-homogeneously thinned and reduced fo…

research product

Friction based Solid State Welding Techniques for Transportation Industry Applications

Abstract Solid bonding based processes represent an effective solution in terms of both joints mechanical performances and sustainability. In the last years, both the academic and the industrial researchers focused their work on two solid-state processes: Friction Stir Welding (FSW) and Linear Friction Welding (LFW). The former, patented in 1991 by TWI, is used to weld sheet metal in different joint morphologies, i.e. butt, lap T and 3D joints. The latter has been known for several years, but a growing interest is observed in the last years due to the enhancement of the welding machines performances. LFW, used to join bulk components, is particularly suited for aeronautical and aerospace ap…

research product

Welding abilities of UFG metals

Ultrafine Grained (UFG) metals are characterized by an average grain size of <1 μm and mostly high angle grain boundaries. These materials exhibit exceptional improvements in strength, superplastic behaviour and in some cases enhanced biocompatibility. UFG metals barstock can be fabricated effectively by means of Severe Plastic Deformation (SPD) methods. However, the obtained welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone…

research product

Design of Numerical Simulations of Linear Friction Welding Processes: Issues and Difficulties

In this paper, a critical analysis of the technical difficulties and numerical issues in running simulations of linear friction welding processes is carried out. The focus of the paper is the comparison of different modeling strategies of a numerical analysis for the LFW process of Ti-6Al-4V titanium alloy, for which the thermal aspect strongly influences the mechanical behavior due to the phase transformation, taking place over a definite range of temperature. A 3D simulation campaign, conducted using the FEA code DEFORMTM, was considered in order to show advantages and disadvantages of each approach, including the most critic limitations and complexity in a correct simulation design using…

research product

On tool stirring action in friction stir welding of work hardenable aluminium alloys

In the paper solid state bonding conditions obtained in friction stir welding (FSW) of AA5754-H111 butt joints are analysed, considering the so called zigzag line in the transverse section of the joints. A wide experimental campaign was carried out varying both tool advancing speed and tool rotational one. The effects of the process on the mechanical properties of the joint were highlighted and micro- and macro-observations were used in order to explain the reasons of the enhanced mechanical properties found for the welded material. Numerical results derived from a FEM model previously developed by the authors were utilised to point out the different mechanical and metallurgical behavior of…

research product

Mappe di Lavorabilita’ per Giunti Misti di Alluminio Mediante Processo di Saldatura Linear Friction Welding

Il Linear Friction Welding è un processo di saldatura allo stato solido in cui una parte fissa è forzata contro una parte che si muove con moto lineare alternato per generare calore attraverso l’attrito. Nel presente lavoro viene descritto lo studio effettuato per la realizzazione della giunzione mista mediante processo di Linear Friction Welding tra due leghe di alluminio che presentano proprietà meccaniche differenti, come la lega AA2011 e AA6082. Lo studio è stato condotto analizzando due differenti configurazioni determinate dalla posizione relativa delle leghe costituenti i provini da saldare. Per la realizzazione del processo è stata utilizzata una macchina prototipale dotata di senso…

research product

Formability enhancement in incremental forming operations through sheet local heating

research product

Single block 3D numerical model for linear friction welding of titanium alloy

A two-stage approach for the simulation of Linear Friction Welding is presented. The proposed model, developed using the commercial simulation package DEFORM, is 3D Lagrangian, thermo-mechanically coupled. The first phase of the process was modelled with two distinct workpieces, while the remaining phases were simulated using a single-block model. The Piwnik–Plata criterion was set up and used to determine the shifting from the dual object to the single-block model. The model, validated against experimental temperature measurements, is able to predict the main field variables distributions with varying process parameters. Titanium alpha and beta phases evolution during the whole process has…

research product

Ingegnerizzazione di una macchina prototipale per processi di saldatura linear friction welding

research product

AZ31 magnesium alloy recycling through friction stir extrusion process

Friction Stir Extrusion is a novel technique for direct recycling of metal scrap. In the process, a dedicated tool produces both the heat and the pressure to compact and extrude the original raw material, i.e., machining chip, as a consolidated component. A proper fixture was used to carry out an experimental campaign on Friction Stir Extrusion of AZ31 magnesium alloy. Variable tool rotation and extrusion ratio were considered. Appearance of defects and fractures was related to either too high or too low power input. The extruded rods were investigated both from the metallurgical and mechanical points of view. Tensile strength up to 80 % of the parent material was found for the best combina…

research product

An Innovative Friction Stir Welding Based Technique to Produce Dissimilar Light Alloys to Thermoplastic Matrix Composite Joints

Abstract Aluminum sheets can be joined to composite materials with different techniques. Each of them has advantages and weak points over the others. In literature, new techniques and patents are continuously developed to overcome these difficulties. In the paper a new Friction Stir Welding based approach is proposed to mechanically join AA6082-T6 to self-reinforced polypropylene. The aluminum sheet is pre-holed along both the sides of the weld line. A pinless tool generates the heat and pressure needed to activate back-extrusion of the composite. Joints have been produced with varying hole diameter and pitch. The mechanical resistance of the joint has been evaluated and the different failu…

research product

Effective Linear Friction Welding Machine Redesign through Process Analysis

Linear friction welding is a solid-state joining process developed for non-axisymmetric components in which the joining of the specimens is obtained through reciprocating motion and pressure. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. In order to design an effective machine, relevant issues derive from the high frequency and the large inertial forces involved in the process. In this study, the authors describe the redesign of a preexisting prototypal machine for LFW processes. A machine redesign is needed when welding high resistant materials, i.e. steels or titanium alloys, with high …

research product

Friction based solid state welding techniques for transportation industry applications

research product

Residual stress measurement in innovative friction stir welding processes

In recent years, important innovations have been introduced in Friction Stir Welding (FSW) technology such as, for example, the Laser assisted Friction Stir Welding (LFSW) and in-process Cooled Friction Stir Welding (CFSW). Residual stresses have a fundamental role in welded structures because they affect the way to design the structures, fatigue life, corrosion resistance and many other material properties. Consequently, it is important to investigate the residual stress distribution in FSW where, though the heat input is lower compared to traditional welding techniques, the constraints applied to the parts to weld are more severe. The aim of the present work is to verify the capabilities …

research product