6533b822fe1ef96bd127cf12
RESEARCH PRODUCT
Constant Heat Input Friction Stir Welding of Variable Thickness AZ31 Sheets Through In-Process Tool Rotation Control
Davide CampanellaLivan FratiniGianluca BuffaA. BarcellonaMichela SimonciniArchimede Forcellesesubject
Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazioni0209 industrial biotechnologyMaterials scienceMechanical EngineeringVariable thickness020206 networking & telecommunications02 engineering and technologyIndustrial and Manufacturing EngineeringComputer Science Applications020901 industrial engineering & automationControl and Systems Engineering0202 electrical engineering electronic engineering information engineeringFriction stir weldingBlanks Computer simulation Friction Heat Rotation Welding Temperature Mechanical propertiesComposite materialConstant (mathematics)Settore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneRotation controldescription
Tailored blanks characterized by variable thickness were friction stir welded (FSWed) with the aim to obtain constant joint properties along the weld seam, regardless of the thickness change. To pursue this goal, the heat input was kept constant by in-process control of tool rotation. A dedicated numerical model of the process was used to determine the tool rotation values as a function of the sheet thickness. The mechanical properties and the microstructure of the FSWed joints, produced with varying process parameters, were studied. It was found that the proposed approach can produce joints with uniform properties along the weld line in terms of stress–strain curve shape, joint strength, elongation at failure, and microstructure.
year | journal | country | edition | language |
---|---|---|---|---|
2019-06-10 | Journal of Manufacturing Science and Engineering |