0000000000006221

AUTHOR

P. Kuusiniemi

showing 35 related works from this author

DM-like anomalies in neutron multiplicity spectra

2021

Abstract A new experiment collects data, since November 2019, at a depth of 210 m.w.e. in the Callio Lab in the Pyhasalmi mine in Finland. The setup, called NEMESIS (New Emma MEasurementS Including neutronS), incorporates infrastructure from the EMMA experiment with neutron and large-area plastic scintillator detectors. The experiment’s primary aim is to combine muon tracking with position-sensitive neutron detection to measure precision yields, multiplicities, and lateral distributions of high-multiplicity neutron events induced by cosmic muons in various materials. The data are relevant for background evaluation of the deep-underground searches for Dark Matter (DM), neutrino-less double b…

pimeä aineHistoryPhysics::Instrumentation and Detectorsilmaisimetneutronithiukkasfysiikka114 Physical sciencesComputer Science ApplicationsEducation
researchProduct

Studies of SHE at SHIP

2007

An overview of present experimental investigation of superheavy elements is given. The data are compared with theoretical descriptions. Results are reported from an experiment to confirm production of element 112 isotopes in irradiation of 238UF4 with 48Ca. One spontaneous fission event was measured, which agrees with three events of previously measured data which had been assigned to the decay of 283112. However, more experimental work is needed in order to obtain an independent and unambiguous confirmation of previous results.

Nuclear physicsNuclear reactionIsotopeFissionChemistryTransactinide elementNeutronRadioactive decayEvent (probability theory)Spontaneous fissionAIP Conference Proceedings
researchProduct

Parity nonconservation in the γ decay of polarized17/2−isomers inTc93

2005

The determination of the ${0}^{\ifmmode^\circ\else\textdegree\fi{}}\ensuremath{-}{180}^{\ifmmode^\circ\else\textdegree\fi{}}$ asymmetry (${A}_{\ensuremath{\gamma}}$), which arises because of the parity nonconserving matrix element, in the 751-keV \ensuremath{\gamma} decay of polarized $17/{2}^{\ensuremath{-}}$ isomers in $^{93}\mathrm{Tc}$ with respect to the direction of polarization is reported. A combined analysis of the present results together with those from our earlier work yields an effect of two standard deviations.

PhysicsNuclear and High Energy PhysicsCondensed matter physicsmedia_common.quotation_subjectGamma rayMatrix elementParity (physics)Atomic physicsAsymmetrymedia_commonPhysical Review C
researchProduct

NEMESIS Setup for Indirect Detection of WIMPs

2022

We summarize the evidence for DM-like anomalies in neutron multiplicity spectra collected underground with Pb targets by three independent experiments: NEMESIS (at 210 m.w.e.) NMDS (at 583 m.w.e.), and ZEPLIN-II (at 2850 m.w.e.). A new analysis shows small but persistent anomalies at high neutron multiplicities. Adjusted for differences in detection efficiencies, the positions of the anomalies are consistent between the three systems. Also, the intensities match when corrected for the acquisition time and estimated detection efficiency. While the three measurements are inconclusive when analyzed separately, together, they exclude a statistical fluke to better than one in a million. To prove…

Neutron detectorsNuclear and High Energy PhysicsWIMPWimpneutron detectorsneutronithiukkasfysiikka114 Physical sciencesdark matterpimeä aineIndirect detectionDark matterindirect detectionInstrumentation
researchProduct

A New Low Background Laboratory in the Pyhäsalmi Mine : Towards 14C free liquid scintillator for low energy neutrino experiments

2017

A new low background laboratory in Pyhäsalmi mine in the Central Finland has been put into operation in the beginning of 2017. The laboratory operates at the depth of 1436 m (~4100 meters of water equivalent). In this paper, we present description of the laboratory’s existing facility and background conditions. In the laboratory, a series of measurements has been started where the 14C concentration is determined from several liquid scintillator samples. A dedicated setup has been designed and constructed with the aim of measuring the 14C/12C ratio smaller than 10-18 . peerReviewed

Low energyta114research equipmentcosmic radiationNuclear engineeringtutkimuslaitteetneutriinotEnvironmental scienceneutrinosNeutrinoScintillatorWater equivalentkosminen säteily
researchProduct

The features of electronics structure of the multichannel scintillation module for the EMMA experiment

2011

A brief description of the developed structural electric diagrams of 16-channel scintillation module for the underground EMMA experiment, the basic characteristics and parameters of the electrical diagrams of this module are presented. Multi-pixel photodiodes operating in a limited Geiger mode are used for photoreadout of the scintillator detectors in 16-channel scintillation module. The method of the automatic tuning of the photosensors gain based on the stabilization of an average counting rate of the scintillation detectors from gamma rays of a natural radioactive background is described. peerReviewed

PhysicsScintillationPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsbusiness.industryGamma rayPhotodetectorAstronomy and AstrophysicsScintillatorEMMA experiencePhotodiodelaw.inventionlawnuclear structureelektroniikkaOptoelectronicsGeiger counterstructureElectronicsydinfysiikkabusinessCounting rateAstrophysics and Space Sciences Transactions
researchProduct

Possibilities for Underground Physics in the Pyh\"asalmi mine

2018

The Pyh\"asalmi mine is uniquely suited to host new generation of large-scale underground experiments. It was chosen both by the LAGUNA-LBNO and by the LENA Collaboration as the preferred site for a giant neutrino observatory. Regrettably, none of these projects got funded. The termination of the underground excavations in the fall of 2019 marks an important milestone. To maintain the infrastructure in good condition a new sponsor must be found: either a large-scale scientific project or new commercial operation. The considered alternatives for the commercial used of the mine include a pumped-storage hydroelectricity plant and a high-security underground data-storage centre. Without a new s…

Physics - Instrumentation and DetectorsHigh Energy Physics - Experiment
researchProduct

Measurement of the $2^+\rightarrow 0^+$ ground-state transition in the $\beta$ decay of $^{20}$F

2018

We report the first detection of the second-forbidden, non-unique, $2^+\rightarrow 0^+$, ground-state transition in the $\beta$ decay of $^{20}$F. A low-energy, mass-separated $^{20}\rm{F}^+$ beam produced at the IGISOL facility in Jyv\"askyl\"a, Finland, was implanted in a thin carbon foil and the $\beta$ spectrum measured using a magnetic transporter and a plastic-scintillator detector. The $\beta$-decay branching ratio inferred from the measurement is $b_{\beta} = [ 0.41\pm 0.08\textrm{(stat)}\pm 0.07\textrm{(sys)}] \times 10^{-5}$ corresponding to $\log ft = 10.89(11)$, making this one of the strongest second-forbidden, non-unique $\beta$ transitions ever measured. The experimental resu…

High Energy Physics::ExperimentNuclear Experiment
researchProduct

Gamma-ray spectroscopy of191,193Bi

2001

Very neutron-deficient Bi-191,Bi-193 nuclei have been studied at the Department of Physics, University of Jyvaskyla, Finland (JYFL) employing the Jurosphere II Ge-detector array coupled to the gas-filled recoil separator RITU and different tagging techniques. For the first time in heavy odd-mass nuclei, a collective band (oblate) is identified above the 2p-1h (1/2(+)) proton intruder state in Bi-191. In both Bi-191,Bi-193, a band based on isomeric 13/2(+) state has been observed and oblate deformation for this state has been deduced. ispartof: Acta Physica Polonica B vol:32 issue:3 pages:1019-1023 ispartof: location:POLAND, ZAKOPANE status: published

STATESNUCLEITLBIspektroskopiaALPHA-DECAYISOTOPESSpectroscopy
researchProduct

Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO

2021

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive …

Physics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidhigh [energy resolution]01 natural sciences7. Clean energymass [target]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)JUNO; Neutrino oscillation; Solar neutrinoelastic scattering [neutrino electron]KamLAND[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]flavor [transformation]neutrino oscillationInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsElastic scatteringJUNOliquid [scintillation counter]neutrino oscillation solar neutrino JUNOSettore FIS/01 - Fisica Sperimentaleoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]neutrino electron: elastic scatteringtensionmass difference [neutrino]ddc:nuclear reactor [antineutrino]observatoryHigh Energy Physics - PhenomenologyPhysics::Space Physicsneutrino: flavorsolar [neutrino]target: massNeutrinonumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsNeutrino oscillationmatter: solarCherenkov counter: waterneutrino: mass differenceFOS: Physical sciencesSolar neutrinoNOtransformation: flavoruraniumPE2_20103 physical scienceselectron: recoil: energyantineutrino: nuclear reactorsolar [matter]ddc:530ddc:610Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationbackground: radioactivityCherenkov radiationAstrophysiquesolar neutrino010308 nuclear & particles physicswater [Cherenkov counter]radioactivity [background]flavor [neutrino]Astronomy and Astrophysicssensitivityneutrino: mixing anglerecoil: energy [electron]energy spectrum [electron]electron: energy spectrumHigh Energy Physics::Experimentsphereneutrino: oscillationenergy resolution: highEnergy (signal processing)mixing angle [neutrino]
researchProduct

Measurement of the 2+--0+ ground-state transition in the ß decay of 20F

2020

12 pags., 16 figs., 4 tabs.

researchProduct

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

2021

To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detect…

organic compounds: admixtureNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorscintillation counter: liquidAnalytical chemistryFOS: Physical sciencesmodel: opticalScintillatorWavelength shifterantineutrino: detector01 natural sciencesNOHigh Energy Physics - Experimentwavelength shifterHigh Energy Physics - Experiment (hep-ex)PE2_2Daya BayNeutrino0103 physical sciencesfluorine: admixture[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsJUNO010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorLight yield; Liquid scintillator; NeutrinoInstrumentation and Detectors (physics.ins-det)Yield (chemistry)Scintillation counterComposition (visual arts)photon: yieldNeutrinoLight yieldNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Measurement of the 2+→0+ ground-state transition in the β decay of 20F

2019

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of 20F. A low-energy, mass-separated 20F+ beam produced at the IGISOL facility in Jyväskylä, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10−5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

High Energy Physics::Experimentydinfysiikka
researchProduct

Decay studies of new isomeric states in 255No

2022

The decay of excited states in 255No was investigated by applying the evaporation-residue–conversion-electron correlation technique. Two new isomeric states were observed in 255No together with the previously known one. Excitation energies of the isomeric states were estimated based on the energies of conversion electrons and γ rays from correlation chains. These results were in accord with theoretical calculations based on the mean-field models. A tentative decay scheme of isomeric states in 255No is proposed, and their Nilsson configurations are discussed. The energy decrease of the 11/2−[725] Nilsson level for heavy N=153 isotones as a function of increasing proton number is confirmed. p…

ydinfysiikka
researchProduct

Towards higher sensitivity at the RITU focal plane

2001

The recently reconstructed focal plane detector system for the gas-filled recoil separator RITU was used to observe a new proton emitter 164Ir. The nuclide was produced via the p5n fusion evaporation channel using a 64Zn beam on a 106Cd target. The proton energy Ep = 1817(9) keV and half-life T1/2 = 113+62-30 μ s were used to characterize the decaying state to be [π h11/2 ν f7/2]9+. The new focal plane detector system and the results of the proton decay studies will be discussed. peerReviewed

focal planesNuclear Experimentdetector systems
researchProduct

γ decay of excited states in 198Rn identified using correlated radioactive decay

1999

The low-lying level structure of the neutron-deficient isotope 198Rn has been studied for the first time, using the 166Er(36Ar,4n) reaction at a beam energy of 175 MeV. Evaporation residues were selected using an in-flight gas-filled separator, RITU, and implanted at the focal plane into a 16-element position-sensitive, passivated ion-implanted planar silicon detector. Prompt γ rays in 198Rn were observed at the target position using the JUROSPHERE array of 24 Compton-suppressed germanium detectors, and were identified by the subsequent radioactive decay of associated recoiling ions in the silicon detector. Isotopic assignments of the nuclei produced were made on the basis of the energy and…

isotoopitydinreaktiotradioaktiivinen säteilyfysiikkapuoliintumisaikaNuclear Experimentydinfysiikkaradioaktiivisuus
researchProduct

Measuring the 14C content in liquid scintillators

2016

We are going to perform a series of measurements where the 14C/12C ratio will be measured from several liquid scintillator samples with a dedicated setup. The setup is designed with the aim of measuring ratios smaller than 10−18. Measurements take place in two underground laboratories: in the Baksan Neutrino Observatory, Russia and in the Pyh¨asalmi mine, Finland. In Baksan the measurements started in 2015 and in Pyh¨asalmi they start in the beginning of 2015. In order to fully understand the operation of the setup and its background contributions a development of simulation packages has also been started. Low-energy neutrino detection with a liquid scintillator requires that the intrinsic …

low-energy neutrino detectionhiililiquid scintillatorsisotope ratio
researchProduct

EMMA - A New Underground Cosmic-Ray Experiment

2005

A new type of cosmic-ray experiment is under construction in the Pyh\"asalmi mine in the underground laboratory of the University of Oulu, Finland. It aims to study the composition of cosmic rays at and above the knee region. The experiment, called EMMA, will cover approximately 150 square-metres of detector area. The array is capable of measuring the multiplicity and the lateral distribution of underground muons, and the arrival direction of the air shower. The full-size detector is expected to run by the end of 2007.

HistoryMuon010308 nuclear & particles physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)DetectorAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesCosmic rayKnee regionThreshold energyAstrophysics7. Clean energy01 natural sciencesComputer Science ApplicationsEducationNuclear physicsOverburdenAir shower0103 physical sciencesHigh Energy Physics::Experiment010303 astronomy & astrophysicsGeologyLepton
researchProduct

Calculation of total muon flux observed by Muon Monitor experiment

2017

An approach to calculate the flux of cosmicgenic muons detected by Muon Monitor experiment in lab LAB2400 of the Underground Laboratory in Canfranc (LSC) is described. The measuring apparatus consists of three layers of SC16 scintillation matrix detectors. The hardware function of the detector assembly was determined using computer simulation. Obtained value of the total muon ux turned out to be equal to (4.35 ± 0.2) × 10−3 m −2 s −1. peerReviewed

muon fluxPhysics::Instrumentation and Detectorscosmicgenic muonsHigh Energy Physics::ExperimentMuon Monitor
researchProduct

Observation ofK=1/2octupole deformed bands in227Th

2002

High-spin states in 227Th have been populated using the reaction 226Ra(α,3n)227Th at a bombarding energy of 33 MeV. The high-spin rotational structures of this nucleus have been refined and extended. In addition, the linking of these structures with the low-spin states known from 231U α decay has allowed a comprehensive decay scheme of this nucleus to be assembled for the first time. Four previously known rotational bands are interpreted as Coriolis coupled Kπ=1/2+ and Kπ=1/2− bands, in agreement with predictions using a reflection-asymmetric mean field approach. The determination of decoupling parameters for these bands is consistent with the a(Kπ=1/2+)=−a(Kπ=1/2−) rigid octupole rotor exp…

Nuclear Theory
researchProduct

Alpha decay studies of translead nuclei at the proton drip line

2001

Extensive α-decay studies of the very neutron deficient isotopes 191Po, 195Rn, and 196Rn have been performed at the RITU gas-filled recoil separator. The recoil-α–(α) correlation technique and the α–γ coincidence technique have been utilized to unambiguously connect the observed α-decays to proper nuclei. Illustrative examples on how the α-decay can yield spectroscopic information on the nuclei studied will be presented. peerReviewed

fysiikkaNuclear Experiment
researchProduct

Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

2020

Physical review / D 101(3), 032006 (1-19) (2020). doi:10.1103/PhysRevD.101.032006

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsantineutrino/e: energy spectrumJoint analysishiukkasfysiikka7. Clean energy01 natural sciencesString (physics)PINGUHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)neutrino: atmosphereSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massphysics.ins-detPhysicsJUNOPhysicsneutriinotoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)massa (fysiikka)atmosphere [neutrino]tensionneutrino: nuclear reactormass difference [neutrino]ddc:UpgradePhysique des particules élémentairesnuclear reactor [neutrino]proposed experimentNeutrinoperformanceParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceFOS: Physical sciencesddc:500.25300103 physical sciencesEnergy spectrumIceCube: upgradeOSCILLATIONSddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationenergy spectrum [antineutrino/e]hep-ex010308 nuclear & particles physicssensitivityPhysics and Astronomymass [neutrino]stringupgrade [IceCube]High Energy Physics::ExperimentReactor neutrinoneutrino: oscillationMATTER
researchProduct

Shape coexistence in183Tl

2001

researchProduct

LBNO-DEMO: Large-scale neutrino detector demonstrators for phased performance assessment in view of a long-baseline oscillation experiment

2014

In June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the detector associated systematic errors. The proposed $6\times 6\times 6$m$^3$ DLAr is an industrial prototype of the design discussed in the EoI and scalable…

High Energy Physics - Experiment (hep-ex)Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FOS: Physical sciencesHigh Energy Physics::ExperimentInstrumentation and Detectors (physics.ins-det)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Physics - Experiment
researchProduct

Measurement of the 2+→0+ ground-state transition in the β decay of F 20

2019

| openaire: EC/H2020/654002/EU//ENSAR2 We report the first detection of the second-forbidden, nonunique, 2(+) -> 0(+), ground-state transition in the beta decay of F-20. A low-energy, mass-separated F-20(+) beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the beta spectrum measured using a magnetic transporter and a plastic-scintillator detector. The beta-decay branching ratio inferred from the measurement is b(beta) = [0.41 +/- 0.08(stat) +/- 0.07(sys)] x 10(-5) corresponding to log ft = 10.89(11), making this one of the strongest second-forbidden, nonunique beta transitions ever measured. The experimental result is supported by shell-mode…

3106ELEMENTSHigh Energy Physics::Experiment
researchProduct

Recoil Isomer Tagging on Proton-Rich Odd–Odd N=77 Isotones 142Tb and 144Ho

2001

The isomeric structure of the N=77 isotones 14265Tb and 14467Ho have been studied with the 92Mo(54Fe, xpn) fusion evaporation reaction at the University of Jyväskylä. The Jurospehere II germanium array was employed in conjunction with the RITU gas filled recoil separator. The feeding and decay of a 500(20) ns isomeric state in 144Ho has been established for the first time together with states built upon the known 15 μs isomer in 142Tb. The behavior of these new structures above the isomers suggest that they are low deformation configurations which display signs of triaxiality. peerReviewed

fysiikka
researchProduct

Measurement of the 2 + → 0 + ground-state transition in the β decay of F 20

Physical Review C
researchProduct

First observation of excited states in the neutron deficient N = 86 isotones 159Ta and 160W

2001

The γ decays of excited states in the neutron deficient nuclei 159 Ta and 160 W have been identified for the first time. The nuclei of interest were produced in reactions induced by beams of 58 Ni ions at energies of 286 MeV, 291 MeV, and 298 MeV bombarding a 106 Cd target. Prompt γ rays were recorded using the JUROSPHERE spectrometer and were tagged through the subsequent α decays of associated recoil ions measured in a position-sensitive silicon strip detector at the focal plane of the gas-filled separator RITU. Level schemes have been deduced and compared with similar structures observed in neighboring nuclei. peerReviewed

Nuclear TheoryfysiikkaNuclear Experiment
researchProduct

Geiger mode APD’s for the underground cosmic ray experiment EMMA

2009

cosmic ray
researchProduct

Probing structures of exotic heavy nuclei

2001

The JYFL gas-filled recoil separator RITU, combined with Ge detector arrays, has successfully been employed in Recoil-Decay-Tagging (RDT) experiments in order to probe, for the first time, structures of several very neutron deficient heavy nuclei. In this contribution new data for light even-mass Hg, Pb and Po nuclei are shown and discussed. peerReviewed

Nuclear TheoryNuclear Experiment
researchProduct

The Structure of Heavy Octupole and Superheavy Quadrupole Deformed Nuclei

2001

We report here experimental attempts to determine the sign of the electric dipole moment (relative to the electric octupole moment) in the octupole deformed nucleus 226Ra. Sensitivity to this quantity is observed in the measured yields of γ-ray transitions following very low energy Coulomb excitation. Recent progress is also reported in the development of new spectroscopic techniques that promise to elucidate the structure of deformed superheavy nuclei in the region of 254No. The 4+ → 2+ transition in 254No, as well as higher spin transitions, has been identified using recoil-tagged conversion electron spectroscopy. peerReviewed

Nuclear Theoryfysiikka
researchProduct

High K bands in mid-supershell nuclei

2003

The spectrum of prompt conversion electrons emitted by excited 254No nuclei has been measured, revealing discrete lines arising from transitions within the ground state band. A striking feature is a broad distribution that peaks near 100 keV and comprises high multiplicity electron cascades, probably originating from M1 transitions within rotational bands built on high K states. Evidence for the existence of isomeric states in 254No is presented. peerReviewed

researchProduct

Studies of 225,226U alpha decay chains

2001

Studies of 225,226U α -decay chains produced via heavy ion induced fusion reactions of 22Ne + 208Pb → 230U and of 18O + 208Pb → 226Th were carried out using the JYFL gas-filled magnetic recoil separator RITU. The data obtained for α -decays of 225,226U, 221,222Th, 218Ra and 213Rn concerning their α -particle energies, half-lives and α -decay fine structures are compared to previous investigations. peerReviewed

alpha decay chains
researchProduct

Towards 14C-free liquid scintillator

2017

A series of measurements has been started where the 14C concentration is determined from several liquid scintillator samples. A dedicated setup has been designed and constructed with the aim of measuring concentrations smaller than 10−18. Measurements take place in two underground laboratories: in the Baksan Neutrino Observatory, Russia, and in the new Callio Lab in the Pyhäsalmi mine, Finland. Low-energy neutrino detection with a liquid scintillator requires that the intrinsic 14C concentration in the liquid is extremely low. In the Borexino CTF detector the concentration of 2 × 10−18 has been achieved being the lowest value ever measured. In principle, the older the oil or gas source that…

low-energy neutrino detectionPhysics::Instrumentation and Detectorsilmaisimethiilineutriinotliquid scintillatorsisotope ratio
researchProduct

Decay and in-beam studies of neutron-deficient Po and Ra isotopes at JYFL

1998

An extensive program to study the production, decay properties, and nuclear structure of very neutron-deficient polonium and radium nuclei is underway at the Department of Physics, University of Jyvaskyla, Finland (JYFL). The main tools used in these studies are the gas-filled recoil separator RITU and various germanium gamma-ray arrays. In the course of these studies, among others the following new isotopes have been produced: Ra-204, Ra-203, and Ra-202. Isomeric alpha decaying states have been discovered in Ra-203 and Po-191. Fine structure in the decay of Po-192 to the oblate and prolate band heads in Pb-188 has been observed. In-beam gamma-ray spectra have been, for the first time, meas…

[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex][PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]
researchProduct