0000000000007428

AUTHOR

Turibio Kuiate Tabopda

showing 10 related works from this author

Secondary metabolites from polar fractions of Piper umbellatum.

2012

Seven known secondary metabolites were isolated from the methanol extract of the branches of Piper umbellatum. The identification of these compounds was mainly achieved by 2D NMR spectroscopic techniques and FAB-MS. Among them, the known cepharadiones A and B can be considered as chemotaxonomic markers of the genus Piper.

PharmacologyPiperFlavone glycosidesChromatographybiologyChemistryPlant ExtractsPlant ScienceGeneral MedicinePiperaceaebiology.organism_classificationComplementary and alternative medicineDrug DiscoveryPiper umbellatumPiperNatural product communications
researchProduct

Triterpenoid saponins from Hydrocotyle bonariensis Lam

2011

Abstract Phytochemical investigation of the under-ground parts of Hydrocotyle bonariensis led to the isolation of five oleanane-type triterpenoid saponins, 3- O -{β- d -glucopyranosyl-(1 → 2)-[α- l -arabinopyranosyl-(1 → 3)]-β- d -glucuronopyranosyl}-21- O -(2-methylbutyroyl)-22- O -acetyl-R 1 -barrigenol, 3- O -{β- d -glucopyranosyl-(1 → 2)-[α- l -arabinopyranosyl-(1 → 3)]-β- d -glucuronopyranosyl}-21- O -(2-methylbutyroyl)-28- O -acetyl-R 1 -barrigenol, 3- O -{β- d -glucopyranosyl-(1 → 2)-[α- l -arabinopyranosyl-(1 → 3)]-β- d -glucuronopyranosyl}-21- O -acetyl-R 1 -barrigenol, 3- O -{β- d -glucopyranosyl-(1 → 2)-[α- l -arabinopyranosyl-(1 → 3)]-β- d -glucuronopyranosyl}-R 1 -barrigenol, a…

StereochemistryPlant ScienceHorticultureBiochemistryHydrocotyle bonariensisTriterpenoidHumansCameroonNuclear Magnetic Resonance BiomolecularMolecular BiologyMolecular StructurebiologyChemistryStereoisomerismGeneral MedicineSaponinsHCT116 Cellsbiology.organism_classificationAntineoplastic Agents PhytogenicTriterpenesHuman colon cancerDrug Screening Assays AntitumorHT29 CellsTwo-dimensional nuclear magnetic resonance spectroscopyRhizomeApiaceaePhytochemistry
researchProduct

Steroidal saponins from Chlorophytum deistelianum.

2016

Abstract Phytochemical investigation of the aerial parts of Chlorophytum deistelianum led to the isolation of four previously undescribed steroidal saponins called chlorodeistelianosides A–D with five known ones. Their structures were established mainly by extensive 1D and 2D NMR spectroscopic techniques and mass spectrometry as (25R)-3β-[(β- d -glucopyranosyl-(1 → 3)-[α- l -rhamnopyranosyl-(1 → 4)]-β- d -xylopyranosyl-(1 → 3)-[β- d -glucopyranosyl-(1 → 2)]-β- d -glucopyranosyl-(1 → 4)-β- d -galactopyranosyl)oxy]-5α-spirostan-12-one, (24S,25S)-24-[(β- d -glucopyranosyl)oxy]-3β-[(β- d -glucopyranosyl-(1 → 2)-[β- d -xylopyranosyl-(1 → 3)]-β- d -glucopyranosyl-(1 → 4)-β- d -galactopyranosyl)ox…

StereochemistryPlant ScienceHorticulture01 natural sciencesBiochemistryLiliaceaeSpirostansAnimalsHumansCameroonMolecular BiologyNuclear Magnetic Resonance Biomolecularchemistry.chemical_classificationbiologyMolecular Structure010405 organic chemistryGlycosidePhytosterolsStereoisomerismGeneral MedicineSaponinsbiology.organism_classificationAntineoplastic Agents Phytogenic0104 chemical sciencesRats010404 medicinal & biomolecular chemistrychemistryDrug Screening Assays AntitumorChlorophytumTwo-dimensional nuclear magnetic resonance spectroscopyHuman cancerPhytochemistry
researchProduct

Bioactive aristolactams from Piper umbellatum.

2007

Four alkaloids named piperumbellactams A-D (1-4) were isolated from branches of Piper umbellatum together with known N-hydroxyaristolam II (5), N-p-coumaroyl tyramine (6), 4-nerolidylcatechol (7), N-trans-feruloyltyramine, E-3-(3,4-dihydroxyphenyl)-N-2-[4-hydroxyphenylethyl]-2-propenamide, beta-amyrin, friedelin, apigenin 8-C-neohesperidoside, acacetin 6-C-beta-d-glucopyranoside, beta-sitosterol, its 3-O-beta-d-glucopyranoside and its 3-O-beta-d-[6'-dodecanoyl]-glucopyranoside. Glycosidase inhibition, antioxidant and antifungal activities of these compounds were evaluated. Compounds 1-3 showed moderate alpha-glucosidase enzyme inhibition with IC50 values 98.07+/-0.44, 43.80+/-0.56 and 29.64…

Antifungal AgentsLactamsStereochemistryDPPHFriedelinPlant ScienceHorticultureBiochemistryHeterocyclic Compounds 4 or More Ringschemistry.chemical_compoundAlkaloidsMolecular BiologyPiperAcacetinbiologyMolecular StructurePlant ExtractsAlkaloidGeneral MedicineFree Radical ScavengersTyraminePiperaceaePlant Components Aerialbiology.organism_classificationchemistryApigeninPiperPhytochemistry
researchProduct

Three New Medicagenic Acid Saponins from Polygala micranthaGuill. & Perr.

2011

Three new medicagenic acid saponins, micranthosides A–C (1–3), were isolated from the roots of Polygala micranthaGuill. & Perr., along with six known presenegenin saponins. Their structures were elucidated on the basis of extensive 1D- and 2D-NMR experiments (1H, 13C, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3-O-β-D-glucopyranosylmedicagenic acid 28-[O-β-D-galactopyranosyl-(14)-O-β-D-xylopyranosyl-(14)-O-α-L-rhamnopyranosyl-(12)-β-D-fucopyranosyl] ester (1), 3-O-β-D-glucopyranosylmedicagenic acid 28-[O-6-O-acetyl-β-D-galactopyranosyl-(14)-O-β-D-xylopyranosyl-(14)-O-α-L-rhamnopyranosyl-(12)-β-D-fucopyranosyl] ester (2), and 3-O-{O-β-D-glucopyranosyl-(13)-O-[β-D-gluc…

biologyChemistryStereochemistryOrganic ChemistryDEPTMass spectrometrybiology.organism_classificationBiochemistryCatalysisPolygalaMedicagenic acidInorganic ChemistryHuman colon cancerDrug DiscoveryPhysical and Theoretical ChemistryCytotoxicityTwo-dimensional nuclear magnetic resonance spectroscopyHeteronuclear single quantum coherence spectroscopyHelvetica Chimica Acta
researchProduct

Antioxidant stilbenoid and flavanonol from stem ofErythrophleum suaveolens(Guill. & Perr.)

2015

Keywords: NMR; 1H NMR; Caesalpiniaceae; Erythrophleum suaveolens; flavanonol; stilbenoid; radical scavenging activity

chemistry.chemical_compoundAntioxidantbiologyChemistrymedicine.medical_treatmentErythrophleum suaveolensmedicineOrganic chemistryGeneral Materials ScienceFlavanonolGeneral ChemistryStilbenoidbiology.organism_classificationMagnetic Resonance in Chemistry
researchProduct

Acylated Triterpene Saponins from Atroxima libericaStapf

2011

The four new acylated triterpene saponins 1–4, isolated as two pairs of isomers and named libericosides A1/A2 and B1/B2, one pair of isomers 5/6, the (Z)-isomer libericoside C2 (5) being new, one new sucrose ester, atroximoside (7), and eight known compounds were isolated from the roots of Atroxima liberica by repeated MPLC and VLC on normal and reversed-phase silica gel. Their structures were elucidated on the basis of extensive 1D- and 2D-NMR studies (1H- and 13C-NMR, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3-O-β-D-glucopyranosylpresenegenin 28-{O-α-L-arabinopyranosyl-(13)-O-β-D-xylopyranosyl-(14)-O-α-L-rhamnopyranosyl-(12)-4-O-[(E)-3,4-dimethoxycinnamoyl]-β-D-f…

chemistry.chemical_classificationStereochemistryOrganic ChemistryDEPTMass spectrometryBiochemistryCatalysisInorganic ChemistryHuman colon cancerTriterpenechemistryDrug DiscoveryPhysical and Theoretical ChemistryAtroxima libericaTwo-dimensional nuclear magnetic resonance spectroscopyHelvetica Chimica Acta
researchProduct

Steroidal saponins from Dioscorea preussii.

2014

Abstract Three new steroidal saponins, named diospreussinosides A–C (1–3), along with two known ones (4, 5) were isolated from rhizomes of Dioscorea preussii. Their structures were elucidated mainly by 1D and 2D NMR spectroscopic analysis and mass spectrometry as (25S)-17α,25-dihydroxyspirost-5-en-3β-yl-O-α- l -rhamnopyranosyl-(1 → 4)-α- l -rhamnopyranosyl-(1 → 4)-β- d -glucopyranoside (1), (25S)-17α,25-dihydroxyspirost-5-en-3β-yl-O-α- l -rhamnopyranosyl-(1 → 4)-α- l -rhamnopyranosyl-(1 → 4)-[α- l -rhamnopyranosyl-(1 → 2)]-β- d -glucopyranoside (2), and (24S,25R)-17α,24,25-trihydroxyspirost-5-en-3β-yl-O-α- l -rhamnopyranosyl-(1 → 4)-α- l -rhamnopyranosyl-(1 → 4)-[α- l -rhamnopyranosyl-(1 → …

PharmacologyDioscorea preussiiMolecular StructureStereochemistryChemistryDioscoreaPhytosterolsGeneral MedicineSaponinsMass spectrometryHCT116 CellsRhizomeDihydroxylationCarcinoma CellDrug DiscoveryHumansDrug Screening Assays AntitumorCytotoxicityTwo-dimensional nuclear magnetic resonance spectroscopyHT29 CellsHuman colonFitoterapia
researchProduct

Induction of Neuronal Differentiation in Neurosphere Stem Cells by Ellagic Acid Derivatives

2009

A bioassay-guided fractionation of methanol extracts of stem barks, combined with screening based on Epidermal Growth Factor (EGF)-responsive neural stem cells (erNSCs) differentiation assay, has been used. This study resulted in the isolation of 3,3′-di- O-methylellagic acid 1, 3,3′-di- O-methyl ellagic acid-4- O-β-D-xylopyranoside 2, ellagic acid 3, and arjunolic acid 4. Among them, compounds 1 and 2 exhibit potent induction of neuronal differentiation in neurosphere stem cells with no cytotoxic effect. These results indicate that compounds 1 and 2 may be useful as pharmacological agents for the treatment of neurodegenerative diseases. These compounds may account, for the use of T. super…

Nervous systemPlant ScienceChemical FractionationBiologyPharmacologyMicechemistry.chemical_compoundEllagic AcidEpidermal growth factorNeurosphereDrug DiscoveryBotanymedicineAnimalsCytotoxic T cellCells CulturedNeuronsPharmacologyStem CellsCell DifferentiationGeneral MedicineIn vitroNeural stem cellmedicine.anatomical_structureComplementary and alternative medicinechemistryTerminaliaStem cellEllagic acidNatural Product Communications
researchProduct

Steroidal saponins from Chlorophytum deistelianum

2016

Abstract Phytochemical investigation of the aerial parts of Chlorophytum deistelianum led to the isolation of four previously undescribed steroidal saponins called chlorodeistelianosides A–D with five known ones. Their structures were established mainly by extensive 1D and 2D NMR spectroscopic techniques and mass spectrometry as (25R)-3β-[(β- d -glucopyranosyl-(1 → 3)-[α- l -rhamnopyranosyl-(1 → 4)]-β- d -xylopyranosyl-(1 → 3)-[β- d -glucopyranosyl-(1 → 2)]-β- d -glucopyranosyl-(1 → 4)-β- d -galactopyranosyl)oxy]-5α-spirostan-12-one, (24S,25S)-24-[(β- d -glucopyranosyl)oxy]-3β-[(β- d -glucopyranosyl-(1 → 2)-[β- d -xylopyranosyl-(1 → 3)]-β- d -glucopyranosyl-(1 → 4)-β- d -galactopyranosyl)ox…

Pharmacologychemistry.chemical_classificationbiologyChemistryStereochemistryOrganic ChemistryPharmaceutical ScienceGlycosidebiology.organism_classificationAnalytical ChemistryComplementary and alternative medicineDrug DiscoveryMolecular MedicineChlorophytumCytotoxicityTwo-dimensional nuclear magnetic resonance spectroscopyHuman cancerPlanta Medica
researchProduct