0000000000008656

AUTHOR

Steven J. Mentzer

Micromechanical forces regulate vascular patterning in the chick chorioallantoic membrane (15.3)

research product

Glycoconjugate expression in the extracellular matrix of the mouse lung (87.7)

research product

Plexiform Vasculopathy in Chronic Thromboembolic Pulmonary Hypertension

research product

Intussusceptive Remodeling of Vascular Branch Angles in Chemically-Induced Murine Colitis

Intussusceptive angiogenesis is a developmental process linked to both blood vessel replication and remodeling in development. To investigate the prediction that the process of intussusceptive angiogenesis is associated with vessel angle remodeling in adult mice, we systematically evaluated corrosion casts of the mucosal plexus in mice with trinitrobenzesulphonic acid (TNBS)-induced and dextran sodium sulfate (DSS)-induced colitis. The mice demonstrated a significant decrease in vessel angles in both TNBS-induced and DSS-induced colitis within 4 weeks of the onset of colitis (p<.001). Corrosion casts 28–30 days after DSS treatment were studied for a variety of detailed morphometric changes.…

research product

Migration of CD11b+ accessory cells during murine lung regeneration

In many mammalian species, the removal of one lung leads to growth of the remaining lung to near-baseline levels. In studying post-pneumonectomy mice, we used morphometric measures to demonstrate neoalveolarization within 21 days of pneumonectomy. Of note, the detailed histology during this period demonstrated no significant pulmonary inflammation. To identify occult blood-borne cells, we used a parabiotic model (wild-type/GFP) of post-pneumonectomy lung growth. Flow cytometry of post-pneumonectomy lung digests demonstrated a rapid increase in the number of cells expressing the hematopoietic membrane molecule CD11b; 64.5% of the entire GFP(+) population were CD11b(+). Fluorescence microscop…

research product

Functional Mechanics of a Pectin-Based Pleural Sealant after Lung Injury.

Pleural injury and associated air leaks are a major influence on patient morbidity and healthcare costs after lung surgery. Pectin, a plant-derived heteropolysaccharide, has recently demonstrated potential as an adhesive binding to the glycocalyx of visceral mesothelium. Since bioadhesion is a process likely involving the interpenetration of the pectin-based polymer with the glycocalyx, we predicted that the pectin-based polymer may also be an effective sealant for pleural injury. To explore the potential role of an equal (weight%) mixture of high-methoxyl pectin and carboxymethylcellulose as a pleural sealant, we compared the yield strength of the pectin-based polymer to commonly available…

research product

Effect of unilateral diaphragmatic paralysis on postpneumonectomy lung growth.

Respiratory muscle-associated stretch has been implicated in normal lung development (fetal breathing movements) and postpneumonectomy lung growth. To test the hypothesis that mechanical stretch from diaphragmatic contraction contributes to lung growth, we performed left phrenic nerve transections (PNT) in mice with and without ipsilateral pneumonectomy. PNT was demonstrated by asymmetric costal margin excursion and confirmed at autopsy. In mice with two lungs, PNT was associated with a decrease in ipsilateral lung volume ( P &lt; 0.05) and lung weight ( P &lt; 0.05). After pneumonectomy, PNT was not associated with a change in activity level, measureable hypoxemia, or altered minute venti…

research product

Bridging Mucosal Vessels Associated with Rhythmically Oscillating Blood Flow in Murine Colitis

Oscillatory blood flow in the microcirculation is generally considered to be the result of cardiopulmonary influences or active vasomotion. In this report, we describe rhythmically oscillating blood flow in the bridging vessels of the mouse colon that appeared to be independent of known biological control mechanisms. Corrosion casting and scanning electron microscopy of the mouse colon demonstrated highly branched bridging vessels that connected the submucosal vessels with the mucosal plexus. Because of similar morphometric characteristics (19 +/- 11 microm vs. 28 +/- 16 microm), bridging arterioles and venules were distinguished by tracking fluorescent nanoparticles through the microcircul…

research product

Structural Remodeling of the Post‐pneumonectomy Lung is Characterized by Septal Retraction and Alveolar Duct Dilation

Murine pneumonectomy (PNX) is an established model of adult compensatory lung growth, involving structural remodeling of the peripheral parenchyma. Following left PNX, positron emission tomography and computerized tomography have demonstrated heterogeneous growth patterns within the remaining right lung. To characterize the structural changes associated with these observations, we analyzed histological sections of the right lung between 3 and 22 days after PNX. Within 3 days of PNX, alveolar septae were significantly shorter (p<0.05) in a majority of alveolar ducts, while septal angle remained unchanged. Septal retraction resulted in an apparent dilation of the alveolar duct with a signific…

research product

The bronchial circulation in COVID-19 pneumonia.

American journal of respiratory and critical care medicine : AJRCCM 205(1), 121-125 (2022). doi:10.1164/rccm.202103-0594IM

research product

Regulatory Network Of Angiogenesis Gene Expression During Post-Pneumonectomy Compensatory Growth

research product

Elastin Cables Define the Axial Connective Tissue System in the Murine Lung

The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanni…

research product

Mechanostructural adaptations preceding postpneumonectomy lung growth

In many species, pneumonectomy results in compensatory growth in the remaining lung. Although the late mechanical consequences of murine pneumonectomy are known, little is known about the anatomic adaptations and respiratory mechanics during compensatory lung growth. To investigate the structural and mechanical changes during compensatory growth, mice were studied for 21 days after left pneumonectomy using microCT and respiratory system impedance (FlexiVent). Anatomic changes after left pneumonectomy included minimal mediastinal shift or chestwall remodeling, but significant displacement of the heart and cardiac lobe. Mean displacement of the cardiac lobe centroid was 5.2 ± 0.8 mm. Lung imp…

research product

The Effect of Calcium on the Cohesive Strength and Flexural Properties of Low-Methoxyl Pectin Biopolymers.

Abstract: Pectin binds the mesothelial glycocalyx of visceral organs, suggesting its potential role as a mesothelial sealant. To assess the mechanical properties of pectin films, we compared pectin films with a less than 50% degree of methyl esterification (low-methoxyl pectin, LMP) to films with greater than 50% methyl esterification (high-methoxyl pectin, HMP). LMP and HMP polymers were prepared by step-wise dissolution and high-shear mixing. Both LMP and HMP films demonstrated a comparable clear appearance. Fracture mechanics demonstrated that the LMP films had a lower burst strength than HMP films at a variety of calcium concentrations and hydration states. The water content also influe…

research product

Evidence for pleural epithelial-mesenchymal transition in murine compensatory lung growth

In many mammals, including rodents and humans, removal of one lung results in the compensatory growth of the remaining lung; however, the mechanism of compensatory lung growth is unknown. Here, we investigated the changes in morphology and phenotype of pleural cells after pneumonectomy. Between days 1 and 3 after pneumonectomy, cells expressing α-smooth muscle actin (SMA), a cytoplasmic marker of myofibroblasts, were significantly increased in the pleura compared to surgical controls (p < .01). Scanning electron microscopy of the pleural surface 3 days post-pneumonectomy demonstrated regions of the pleura with morphologic features consistent with epithelial-mesenchymal transition (EMT); nam…

research product

Pressure-decay testing of pleural air leaks in intact murine lungs: evidence for peripheral airway regulation.

Abstract The critical care management of pleural air leaks can be challenging in all patients, but particularly in patients on mechanical ventilation. To investigate the effect of central airway pressure and pleural pressure on pulmonary air leaks, we studied orotracheally intubated mice with pleural injuries. We used clinically relevant variables – namely, airway pressure and pleural pressure – to investigate flow through peripheral air leaks. The model studied the pleural injuries using a pressure‐decay maneuver. The pressure‐decay maneuver involved a 3 sec ramp to 30 cmH20 followed by a 3 sec breath hold. After pleural injury, the pressure‐decay maneuver demonstrated a distinctive airway…

research product

Branch‐Chain Interpenetration of the Mesothelial Glycocalyx with Naturally‐Occurring Biopolymers

research product

Single-Cell Transcriptional Profiling of Cells Derived From Regenerating Alveolar Ducts

Lung regeneration occurs in a variety of adult mammals after surgical removal of one lung (pneumonectomy). Previous studies of murine post-pneumonectomy lung growth have identified regenerative “hotspots” in subpleural alveolar ducts; however, the cell-types participating in this process remain unclear. To identify the single cells participating in post-pneumonectomy lung growth, we used laser microdissection, enzymatic digestion and microfluidic isolation. Single-cell transcriptional analysis of the murine alveolar duct cells was performed using the C1 integrated fluidic circuit (Fluidigm) and a custom PCR panel designed for lung growth and repair genes. The multi-dimensional data set was …

research product

Vascular Microarchitecture of Murine Colitis-Associated Lymphoid Angiogenesis

In permissive tissues, such as the gut and synovium, chronic inflammation can result in the ectopic development of anatomic structures that resemble lymph nodes. These inflammation-induced structures, termed lymphoid neogenesis or tertiary lymphoid organs, may reflect differential stromal responsiveness to the process of lymphoid neogenesis. To investigate the structural reorganization of the microcirculation involved in colonic lymphoid neogenesis, we studied a murine model of dextran sodium sulfate (DSS)-induced colitis. Standard 2-dimensional histology demonstrated both submucosal and intramucosal lymphoid structures in DSS-induced colitis. A spatial frequency analysis of serial histolog…

research product

Stimulation of regional lymphatic and blood flow by epicutaneous oxazolone.

The application of the epicutaneous antigen oxazolone results in persistent induration and erythema; however, the relative changes in lymph and blood flow in the inflammatory skin are largely unknown. To define the contribution of lymph and blood flow to the clinical appearance of cutaneous inflammation, we studied the sheep ear after the application of oxazolone. As a model for the study of these changes, the sheep ear had several experimental advantages: 1) a simplified superficial vascular network, 2) defined lymphatic drainage, and 3) an avascular and alymphatic cartilaginous barrier. Lymph flow was continuously monitored by cannulation of the prescapular efferent lymph duct. Blood flo…

research product

Sprouting and intussusceptive angiogenesis in postpneumonectomy lung growth: mechanisms of alveolar neovascularization

In most rodents and some other mammals, the removal of one lung results in compensatory growth associated with dramatic angiogenesis and complete restoration of lung capacity. One pivotal mechanism in neoalveolarization is neovascularization, because without angiogenesis new alveoli can not be formed. The aim of this study is to image and analyze three-dimensionally the different patterns of neovascularization seen following pneumonectomy in mice on a sub-micron-scale. C57/BL6 mice underwent a left-sided pneumonectomy. Lungs were harvested at various timepoints after pneumonectomy. Volume analysis by microCT revealed a striking increase of 143 percent in the cardiac lobe 14 days after pneum…

research product

Three-dimensional image analytical detection of intussusceptive pillars in murine lung

A variety of diseases can lead to loss of lung tissue. Currently, this can be treated only symptomatically. In mice, a complete compensatory lung growth within 21 days after resection of the left lung can be observed. Understanding and transferring this concept of compensatory lung growth to humans would greatly improve therapeutic options. Lung growth is always accompanied by a process called angiogenesis forming new capillary blood vessels from preexisting ones. Among the processes during lung growth, the formation of transluminal tissue pillars within the capillary vessels (intussusceptive pillars) is observed. Therefore, pillars can be understood as an indicator for active angiogenesis …

research product

Structural heteropolysaccharides as air-tight sealants of the human pleura

Pulmonary "air leaks," typically the result of pleural injury caused by lung surgery or chest trauma, result in the accumulation of air in the pleural space (pneumothorax). Air leaks are a major source of morbidity and prolonged hospitalization after pulmonary surgery. Previous work has demonstrated structural heteropolysaccharide (pectin) binding to the mouse pleural glycocalyx. The similar lectin-binding characteristics and ultrastructural features of the human and mouse pleural glycocalyx suggested the potential application of these polymers in humans. To investigate the utility of pectin-based polymers, we developed a simulacrum using freshly obtained human pleura. Pressure-decay leak t…

research product

Structural Heteropolysaccharide Adhesion to the Glycocalyx of Visceral Mesothelium

Bioadhesives are biopolymers with potential applications in wound healing, drug delivery, and tissue engineering. Pectin, a plant-based heteropolysaccharide, has recently demonstrated potential as a mucoadhesive in the gut. Since mucoadhesion is a process likely involving the interpenetration of the pectin polymer with mucin chains, we hypothesized that pectin may also be effective at targeting the glycocalyx of the visceral mesothelium. To explore the potential role of pectin as a mesothelial bioadhesive, we studied the interaction of various pectin formulations with the mesothelium of the lung, liver, bowel, and heart. Tensile strength, peel strength, and shear resistance of the bioadhesi…

research product

Microangiectasias: Structural regulators of lymphocyte transmigration

The migration of lymphocytes into inflammatory tissue requires the migrating cell to overcome mechanical forces produced by blood flow. A generally accepted hypothesis is that these forces are overcome by a multistep sequence of adhesive interactions between lymphocytes and endothelial cells. This hypothesis has been recently challenged by results demonstrating wall shear stress on the order of 20 dyn/cm 2 in vivo and infrequent lymphocyte–endothelial adhesion at wall shear stress &gt;1–2 dyn/cm 2 in vitro . Here, we show that lymphocyte slowing and transmigration in the skin is associated with microangiectasias, i.e., focal structural dilatations of microvessel segments. Microangiectasias…

research product

Acceleration of image filtering algorithms for 3D visualization of murine lungs using dataflow engines

Image filtering is one of the most common and important tasks in image processing applications. In this paper, image processing using a mean filtering algorithm combined with thresholding and binarization algorithms for the 3D visualization and analysis of murine lungs is explained. These algorithms are then mapped on the Maxler's MAX2336B Dataflow Engine (DFE) to significantly increase calculation speed. Several different DFE configurations were tested and each yielded different performance characteristics. Optimal algorithm calculation speed was up to 30 fold baseline calculation speed.

research product

Vessel painting of the microcirculation using fluorescent lipophilic tracers

Flexible approaches to defining microvessel morphometry are useful in the study of both acute and chronic structural changes of the microcirculation. In this report, we examined the utility of the intravascular infusion of lipophilic carbocyanine tracers in the structural assessment of the retina, skin, lung, and colon microcirculation. The microvessel labeling technique, here termed fluorescent vessel painting, involved the intravascular injection of sulfonated lipophilic carbocyanine tracers. The utility of vessel painting in morphometry was assessed using morphometric comparisons with corrosion casting and 2-dimensional and 3-dimensional scanning electron microscopy. The comparisons demo…

research product

The murine bronchopulmonary microcirculation in hapten-induced inflammation

ObjectiveThe clinical observation of central bronchial artery hypertrophy in chronic lung inflammation suggests the possibility that the bronchial circulation may also participate in adaptive responses in peripheral lung inflammation.MethodsTo investigate the potential role of the bronchial microcirculation in peripheral lung inflammation, we developed a murine model of lung inflammation using the intratracheal instillation of the peptide-hapten trinitrophenol in presensitized mice.ResultsClinical parameters indicated a peak inflammatory response at 96 hours. Similarly, gross and microscopic evidence of inflammation was observed 96 hours after antigen instillation. Using a forced oscillatio…

research product

research product

Visualizing pectin polymer-polymer entanglement produced by interfacial water movement.

In this report, we investigated the physical conditions for creating pectin polymer-polymer (homopolymer) entanglement. The potential role of water movement in creating pectin entanglement was investigated by placing water droplets-equivalent to the water content of two gel phase films-between two glass phase films and compressing the films at variable probe velocities. Slow probe velocity (0.5 mm/sec) demonstrated no significant debonding. Corresponding videomicroscopy demonstrated an occasional water bridge, but no evidence of stranding or polymer entanglement. In contrast, fast probe velocity (5 mm/sec) resulted in 1) an increase in peak adhesion strength, 2) a progressive debonding curv…

research product

Computational flow dynamics in a geometric model of intussusceptive angiogenesis.

Intussusceptive angiogenesis is a process that forms new blood vessels by the intraluminal division of a single blood vessel into two lumens. Referred to as nonsprouting or intussusceptive angiogenesis, this angiogenic process has been described in morphogenesis and chronic inflammation. Mechanical forces are relevant to the structural changes associated with intussusceptive angiogenesis because of the growing evidence that physiologic forces influence gene transcription. To provide a detailed analysis of the spatial distribution of physiologic shear stresses, we developed a 3D finite element model of the intraluminal intussusceptive pillar. Based on geometries observed in adult intussuscep…

research product

Alveolar Epithelial Dynamics in Postpneumonectomy Lung Growth

The intimate anatomic and functional relationship between epithelial cells and endothelial cells within the alveolus suggests the likelihood of a coordinated response during postpneumonectomy lung growth. To define the population dynamics and potential contribution of alveolar epithelial cells to alveolar angiogenesis, we studied alveolar Type II and I cells during the 21 days after pneumonectomy. Alveolar Type II cells were defined and isolated by flow cytometry using a CD45(-) , MHC class II(+) , phosphine(+) phenotype. These phenotypically defined alveolar Type II cells demonstrated an increase in cell number after pneumonectomy; the increase in cell number preceded the increase in Type …

research product

Alveolar macrophage dynamics in murine lung regeneration

In most mammalian species, the removal of one lung results in dramatic compensatory growth of the remaining lung. To investigate the contribution of alveolar macrophages (AMs) to murine post-pneumonectomy lung growth, we studied bronchoalveolar lavage (BAL)-derived AM on 3, 7, 14 and 21 days after left pneumonectomy. BAL demonstrated a 3.0-fold increase in AM (CD45(+), CD11b(-), CD11c(+), F4/80(+), Gr-1(-)) by 14 days after pneumonectomy. Cell cycle flow cytometry of the BAL-derived cells demonstrated an increase in S + G2 phase cells on days 3 (11.3 ± 2.7%) and 7 (12.1 ± 1.8%) after pneumonectomy. Correspondingly, AM demonstrated increased expression of VEGFR1 and MHC class II between days…

research product

Pulmonary Mechanics Suggest Mechanical Forces Trigger Neoalveolarization In A Murine Model Of Compensatory Lung Growth

research product

QS159. Structural Adaptations Increase Mucosal Capillary Density in Prolonged Murine Colitis

research product

Inflammation-Induced Intussusceptive Angiogenesis in Murine Colitis

Intussusceptive angiogenesis is a morphogenetic process that forms new blood vessels by the division of a single blood vessel into two lumens. Here, we show that this process of intraluminal division participates in the inflammation-induced neovascularization associated with chemically induced murine colitis. In studies of both acute (4-7 days) and chronic (28-31 days) colitis, intravital microscopy of intravascular tracers demonstrated a twofold reduction in blood flow velocity. In the acute colitis model, the decreased velocity was associated with marked dilatation of the mucosal plexus. In contrast, chronic inflammation was associated with normal caliber vessels and duplication (and trip…

research product

Dynamic deformation of migratory efferent lymph-derived cells ?trapped? in the inflammatory microcirculation

The cellular immune response depends on the delivery of lymphocytes from the lymph node to the peripheral site of antigenic challenge. During their passage through the inflammatory microcirculaton, the migratory cells can become transiently immobilized or "trapped" in small caliber vessels. In this report, we used intravital microscopy and temporal area mapping to define the dynamic deformation of efferent lymph-derived mononuclear cells trapped in the systemic inflammatory microcirculation. Mononuclear cells obtained from the efferent lymph draining the oxazolone-stimulated microcirculation were labeled with fluorescent dye and reinjected into the feeding arterial circulation. Intravital v…

research product

Mapping cyclic stretch in the postpneumonectomy murine lung

In many mammalian species, the removal of one lung [pneumonectomy (PNX)] is associated with the compensatory growth of the remaining lung. To investigate the hypothesis that parenchymal deformation may trigger lung regeneration, we used respiratory-gated micro-computed tomography scanning to create three-dimensional finite-element geometric models of the murine cardiac lobe with cyclic breathing. Models were constructed of respiratory-gated micro-computed tomography scans pre-PNX and 24 h post-PNX. The computational models demonstrated that the maximum stretch ratio map was patchy and heterogeneous, particularly in subpleural, juxta-diaphragmatic, and cephalad regions of the lobe. In these…

research product

Morphomolecular motifs of pulmonary neoangiogenesis in interstitial lung diseases

The pathogenetic role of angiogenesis in interstitial lung diseases (ILDs) is controversial. This study represents the first investigation of the spatial complexity and molecular motifs of microvascular architecture in important subsets of human ILD. The aim of our study was to identify specific variants of neoangiogenesis in three common pulmonary injury patterns in human ILD.We performed comprehensive and compartment-specific analysis of 24 human lung explants with usual intersitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) and alveolar fibroelastosis (AFE) using histopathology, microvascular corrosion casting, micro-comupted tomography based volumetry and gene expression…

research product

Angiogenesis in Wounds Treated by Microdeformational Wound Therapy.

BACKGROUND:: Mechanical forces play an important role in tissue neovascularization and are a constituent part of modern wound therapies. The mechanisms by which vacuum assisted closure (VAC) modulates wound angiogenesis are still largely unknown. OBJECTIVE:: To investigate how VAC treatment affects wound hypoxia and related profiles of angiogenic factors as well as to identify the anatomical characteristics of the resultant, newly formed vessels. METHODS:: Wound neovascularization was evaluated by morphometric analysis of CD31-stained wound cross-sections as well as by corrosion casting analysis. Wound hypoxia and mRNA expression of HIF-1α and associated angiogenic factors were evaluated by…

research product

Functional Adhesion of Pectin Biopolymers to the Lung Visceral Pleura

Pleural injuries and the associated “air leak” are the most common complications after pulmonary surgery. Air leaks are the primary reason for prolonged chest tube use and increased hospital length of stay. Pectin, a plant-derived heteropolysaccharide, has been shown to be an air-tight sealant of pulmonary air leaks. Here, we investigate the morphologic and mechanical properties of pectin adhesion to the visceral pleural surface of the lung. After the application of high-methoxyl citrus pectin films to the murine lung, we used scanning electron microscopy to demonstrate intimate binding to the lung surface. To quantitatively assess pectin adhesion to the pleural surface, we used a custom ad…

research product

Dendritic Cell Migration To The Post Pneumonectomy Lung

research product

Bimodal Oscillation Frequencies of Blood Flow in the Inflammatory Colon Microcirculation

Rhythmic changes in blood flow direction have been described in the mucosal plexus of mice with acute colitis. In this report, we studied mice with acute colitis induced either by dextran sodium sulfate or by trinitrobenzenesulfonic acid. Both forms of colitis were associated with blood flow oscillations as documented by fluorescence intravital videomicroscopy. The complex oscillation patterns suggested more than one mechanism for these changes in blood flow. By tracking fluorescent nanoparticles in the inflamed mucosal plexus, we identified two forms of blood flow oscillations within the inflammatory mouse colon. Stable oscillations were associated with a base frequency of approximately 2 …

research product

Laser Microdissection of the Alveolar Duct Enables Single-Cell Genomic Analysis

Complex tissues such as the lung are composed of structural hierarchies such as alveoli, alveolar ducts, and lobules. Some structural units, such as the alveolar duct, appear to participate in tissue repair as well as the development of bronchioalveolar carcinoma. Here, we demonstrate an approach to conduct laser microdissection of the lung alveolar duct for single-cell PCR analysis. Our approach involved three steps. The initial preparation used mechanical sectioning of the lung tissue with sufficient thickness to encompass the structure of interest. In the case of the alveolar duct, the precision-cut lung slices were 200µm thick; the slices were processed using near-physiologic conditions…

research product

Angiogenesis Patterns in Interstitial Lung Disease

research product

Selective Laser Photocoagulation Manipulates Blood Flow Dynamics in Microcirculation

research product

Sequence of vascular patterning and gene transcription in the chick chorioallantoic membrane (15.1)

Introduction: The chick chorioallantoic membrane (CAM) is a well-established model of both vasculogenesis and angiogenesis; however, little is known about the genetic control of vascular patterning in the CAM. Methods: Using recent advances in chicken genomics, we investigated the relative expression of 84 angiogenesis genes during the growth and remodeling of the CAM microcirculatory network. Chick embryos, cultured ex ovo, were studied during embryonic development days (EDD) 8-14. UV laser microdissection was used to harvest capillary plexus and 1st, 2nd, and 3rd order conducting vessels for qRT-PCR analysis. Results: Two transcription peaks were observed between EDD 8 and 14. The first p…

research product

Water-Dependent Blending of Pectin Films: The Mechanics of Conjoined Biopolymers

Biodegradable pectin polymers have been recommended for a variety of biomedical applications, ranging from the delivery of oral drugs to the repair of injured visceral organs. A promising approach to regulate pectin biostability is the blending of pectin films. To investigate the development of conjoined films, we examined the physical properties of high-methoxyl pectin polymer-polymer (homopolymer) interactions at the adhesive interface. Pectin polymers were tested in glass phase (10&ndash

research product

Inflammation-responsive focal constrictors in the mouse ear microcirculation

In many capillary exchange beds, blood flow is locally regulated by precapillary sphincter-like activity. In this study, we used intravascular tracers and scanning electron microscopy to investigate precapillary blood flow regulation in the mouse ear. Gelatin ink injections of the normal mouse ear demonstrated 6.8 +/- 2.3 axial vessels with a cutoff of detectable tracer in the early branches: 19 +/- 11 focal constrictions were observed along the 1st to 5th order branches of the axial vessels. A perfusion tracer consisting of biotinylated anti-endothelial lectins (Ricinus Communis Agglutin, Lycopersicon Esculentum and Griffonia Simplicifolia) was circulated for 30 min under physiological con…

research product

Biomaterial-Assisted Anastomotic Healing: Serosal Adhesion of Pectin Films

Anastomotic leakage is a frequent complication of intestinal surgery and a major source of surgical morbidity. The timing of anastomotic failures suggests that leaks are the result of inadequate mechanical support during the vulnerable phase of wound healing. To identify a biomaterial with physical and mechanical properties appropriate for assisted anastomotic healing, we studied the adhesive properties of the plant-derived structural heteropolysaccharide called pectin. Specifically, we examined high methoxyl citrus pectin films at water contents between 17–24% for their adhesivity to ex vivo porcine small bowel serosa. In assays of tensile adhesion strength, pectin demonstrated significant…

research product

Focal topographic changes in inflammatory microcirculation associated with lymphocyte slowing and transmigration

Microcirculation is the primary mechanism for delivering lymphocytes to inflammatory tissues. Blood flow within microvessels ensures a supply of lymphocytes at the blood-endothelial interface. Whether the structure of the inflammatory microcirculation facilitates lymphocyte transmigration is less clear. To illuminate the microcirculatory changes associated with lymphocyte transmigration, we used intravital videomicroscopy to examine the dermal microcirculation after application of the epicutaneous antigen oxazolone. Intravascular injection of fluorescein-labeled dextran demonstrated focal topographic changes in the microcirculation. These focal changes had the appearance of loops or hairpin…

research product

Post‐pneumonectomy Lung Deformation is Associated with Alveolar Type II Cell Apoptosis and Altered Parenchymal Mechanics

research product

Mesopolysaccharides: The extracellular surface layer of visceral organs

The mesothelium is a dynamic and specialized tissue layer that covers the somatic cavities (pleural, peritoneal, and pericardial) as well as the surface of the visceral organs such as the lung, heart, liver, bowel and tunica vaginalis testis. The potential therapeutic manipulation of visceral organs has been complicated by the carbohydrate surface layer—here, called the mesopolysaccharide (MPS)—that coats the outer layer of the mesothelium. The traditional understanding of MPS structure has relied upon fixation techniques known to degrade carbohydrates. The recent development of carbohydrate-preserving fixation for high resolution imaging techniques has provided an opportunity to re-examine…

research product

Blood flow patterns spatially associated with platelet aggregates in murine colitis.

In the normal murine mucosal plexus, blood flow is generally smooth and continuous. In inflammatory conditions, such as chemically-induced murine colitis, the mucosal plexus demonstrates markedly abnormal flow patterns. The inflamed mucosal plexus is associated with widely variable blood flow velocity as well as discontinuous and even bidirectional flow. To investigate the mechanisms responsible for these blood flow patterns, we used intravital microscopic examination of blood flow within the murine mucosal plexus during dextran sodium sulphate-and trinitrobenzenesulfonic acid-induced colitis. The blood flow patterns within the mucosal plexus demonstrated flow exclusion in 18% of the vessel…

research product

Murine Microvideo Endoscopy of the Colonic Microcirculation

Natural orifice endoscopy in small animal models has been limited in the past by instrument size and optical performance. In this report, we investigate the feasibility of using a recently developed microvideo endoscopy system to evaluate the colon microcirculation. Using a murine model of acute colitis, microvideo endoscopy was useful in mapping the topography of inflammation as well as identifying relevant structures in the microcirculation. We conclude that natural orifice endoscopy is a useful method for the minimally invasive longitudinal assessment of the colonic mucosal microcirculation.

research product

Architectural changes of the extracellular matrix in compensatory lung growth (540.2)

Compensatory growth of the remaining lung after murine pneumonectomy (PNX) involves the structural remodeling of the peripheral acini. Although the role of stem cells and local cellular proliferati...

research product

Pectin biopolymer mechanics and microstructure associated with polysaccharide phase transitions.

Polysaccharide polymers like pectin can demonstrate striking and reversible changes in their physical properties depending upon relatively small changes in water content. Recent interest in using pectin polysaccharides as mesothelial sealants suggests that water content, rather than nonphysiologic changes in temperature, may be a practical approach to optimize the physical properties of the pectin biopolymers. Here, we used humidified environments to manipulate the water content of dispersed solution of pectins with a high degree of methyl esterification (high-methoxyl pectin; HMP). The gel phase transition was identified by a nonlinear increase in compression resistance at a water content …

research product

Regulation Of Post-Pneumonectomy Angiogenesis By Type II Pneumocytes

research product

Remodeling of alveolar septa after murine pneumonectomy

In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) ( P &gt…

research product

Pulmonary microvascular architecture in hereditary haemorrhagic telangiectasia

A 24-year-old Caucasian man was admitted with a known hereditary haemorrhagic telangiectasia (HHT) and heterozygous mutation of factor V Leiden following episodes of cerebral infarctions in occipital lobes, cerebellum and brainstem. In his case history, the patient underwent several interventional embolisation of arteriovenous (AV) malformations in the middle and lower lobes (figure 1). However, those were not completely successful as the malformations were diffuse. We performed video-assisted thoracoscopic surgery with a resection of the middle lobe and a wedge resection of segment 10. Figure 1 CT scans depict the pulmonary arteriovenous malformations after re-embolisation in the middle lo…

research product

QS280. Mesoscopic Traffic Flow Theory Characterizes Microhemodynamics in Chemically-Induced Murine Colitis

research product

Visualization of SARS-CoV-2 in the Lung.

research product

Stretch-induced Intussuceptive and Sprouting Angiogenesis in the Chick Chorioallantoic Membrane

Vascular systems grow and remodel in response to not only metabolic needs, but also mechanical influences as well. Here, we investigated the influence of tissue-level mechanical forces on the patterning and structure of the chick chorioallantoic membrane (CAM) microcirculation. A dipole stretch field was applied to the CAM using custom computer-controlled servomotors. The topography of the stretch field was mapped using finite element models. After 3 days of stretch, Sholl analysis of the CAM demonstrated a 7-fold increase in conducting vessel intersections within the stretch field (p 0.05). In contrast, corrosion casting and SEM of the stretch field capillary meshwork demonstrated intense …

research product

Spatial calibration of structured illumination fluorescence microscopy using capillary tissue phantoms.

Quantitative assessment of microvascular structure is relevant to the investigations of ischemic injury, reparative angiogenesis and tumor revascularization. In light microscopy applications, thick tissue specimens are necessary to characterize microvascular networks; however, thick tissue leads to image distortions due to out-of-focus light. Structured illumination confocal microscopy is an optical sectioning technique that improves contrast and resolution by using a grid pattern to identify the plane-of-focus within the specimen. Because structured illumination can be applied to wide-field (nonscanning) microscopes, the microcirculation can be studied by sequential intravital and confocal…

research product

Structural adaptations in the murine colon microcirculation associated with hapten-induced inflammation

Objectives: Blood flowing across the vascular endothelium creates wall shear stress, dependent on flow velocity and vessel geometry, that tends to disrupt lymphocyte-endothelial cell adhesion. To identify structural adaptations during acute colitis that may facilitate transmigration, we investigated the microcirculation in a murine model of acute colitis. Methods: In trinitrobenzenesulfonic acid (TNBS)- induced acute colitis, the infiltrating cells and colonic microcirculation was investigated by cellular topographic mapping as well as corrosion casting and 3- dimensional (3D) scanning electron microscopy. Colonic blood velocimetry was performed using intravital microscopy. Results: Clinica…

research product

Blood flow shapes intravascular pillar geometry in the chick chorioallantoic membrane.

The relative contribution of blood flow to vessel structure remains a fundamental question in biology. To define the influence of intravascular flow fields, we studied tissue islands--here defined as intravascular pillars--in the chick chorioallantoic membrane. Pillars comprised 0.02 to 0.5% of the vascular system in 2-dimensional projection and were predominantly observed at vessel bifurcations. The bifurcation angle was generally inversely related to the length of the pillar (R = -0.47, P .05). 3-dimensional computational flow simulations indicated that the intravascular pillars were located in regions of low shear stress. Both wide-angle and acute-angle models mapped the pillars to regio…

research product

Molecular Imaging in the Regenerating Post Pneumonectomy Lung

research product

Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19

Abstract: BackgroundProgressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (Covid-19) pandemic. Despite widespread interest in the pathophysiology of the disease, relatively little is known about the associated morphologic and molecular changes in the peripheral lung of patients who die from Covid-19. MethodsWe examined 7 lungs obtained during autopsy from patients who died from Covid-19 and compared them with 7 lungs obtained during autopsy from patients who died from acute respiratory distress syndrome (ARDS) secondary to influenza A(H1N1) infection and 10 age-matched, uninfected control lungs. The lungs were studied with the use of seven-color immun…

research product

Intravascular pillars and pruning in the extraembryonic vessels of chick embryos.

To investigate the local mechanical forces associated with intravascular pillars and vessel pruning, we studied the conducting vessels in the extraembryonic circulation of the chick embryo. During the development days 13-17, intravascular pillars and blood flow parameters were identified using fluorescent vascular tracers and digital time-series video reconstructions. The geometry of selected vessels was confirmed by corrosion casting and scanning electron microscopy. Computational simulations of pruning vessels suggested that serial pillars form along pre-existing velocity streamlines; blood pressure demonstrated no obvious spatial relationship with the intravascular pillars. Modeling a Re…

research product

Deformation-induced transitional myofibroblasts contribute to compensatory lung growth

In many mammals, including humans, removal of one lung (pneumonectomy) results in the compensatory growth of the remaining lung. Compensatory growth involves not only an increase in lung size, but also an increase in the number of alveoli in the peripheral lung; however, the process of compensatory neoalveolarization remains poorly understood. Here, we show that the expression of α-smooth muscle actin (SMA)—a cytoplasmic protein characteristic of myofibroblasts—is induced in the pleura following pneumonectomy. SMA induction appears to be dependent on pleural deformation (stretch) as induction is prevented by plombage or phrenic nerve transection (P < 0.001). Within 3 days of pneumonectomy, …

research product

Free-Floating Mesothelial Cells in Pleural Fluid After Lung Surgery

Objectives: The mesothelium, the surface layer of the heart, lung, bowel, liver and tunica vaginalis, is a complex tissue implicated in organ-specific diseases and regenerative biology; however, the mechanism of mesothelial repair after surgical injury is unknown. Previous observations indicated seeding of denuded mesothelium by free-floating mesothelial cells may contribute to mesothelial healing. In this study, we investigated the prevalence of mesothelial cells in pleural fluid during the 7 days following pulmonary surgery. Study design: Flow cytometry was employed to study pleural fluid of 45 patients after lung resection or transplantation. We used histologically validated mesothelial …

research product

Extracellular Assembly of the Elastin Cable Line Element in the Developing Lung

In the normal lung, a dominant structural element is an elastic "line element" that originates in the central bronchi and inserts into the distal airspaces. Despite its structural importance, the process that leads to development of the cable line element is unknown. To investigate the morphologic events contributing to its development, we used optical clearing methods to examine the postnatal rat lung. An unexpected finding was numerous spheres, with a median diameter of 1-2 µm, within the primary septa of the rat lung. The spheres demonstrated green autofluorescence, selective fluorescent eosin staining, reactivity with carboxyfluorescein succinimidyl ester, and specific labeling with ant…

research product

CD34+ progenitor to endothelial cell transition in post-pneumonectomy angiogenesis.

In many species, pneumonectomy triggers compensatory lung growth that results in an increase not only in lung volume, but also in alveolar number. Whether the associated alveolar angiogenesis involves the contribution of blood-borne progenitor cells is unknown. To identify and characterize blood-borne progenitor cells contributing to lung growth after pneumonectomy in mice, we studied wild-type and wild-type/green fluorescence protein (GFP) parabiotic mice after left pneumonectomy. Within 21 days of pneumonectomy, a 3.2-fold increase occurred in the number of lung endothelial cells. This increase in total endothelial cells was temporally associated with a 7.3-fold increase in the number of …

research product

Structural contribution of intravascular blood distension to lung mechanics

research product

Scaffolding Effect of Vascular Distension on Peripheral Lung Mechanics

research product

Computational analysis of lung deformation after murine pneumonectomy. [corrected].

In many mammalian species, the removal of one lung (pneumonectomy) is associated with the compensatory growth of the remaining lung. To investigate the hypothesis that parenchymal deformation may trigger lung regeneration, we used microCT scanning to create 3-dimensional finite element geometric models of the murine lung pre- and post-pneumonectomy (24 hours). The structural correspondence between models was established using anatomic landmarks and an iterative computational algorithm. When compared with the pre-pneumonectomy lung, the post-pneumonectomy models demonstrated significant translation and rotation of the cardiac lobe into the post-pneumonectomy pleural space. 2-dimensional maps…

research product

Analysis of pectin biopolymer phase states using acoustic emissions.

Acoustic emissions are stress or elastic waves produced by a material under external load. Since acoustic emissions are generated from within and transmitted through the substance, the acoustic signature provides insights into the physical and mechanical properties of the material. In this report, we used a constant velocity probe with force and acoustic emission monitoring to investigate the properties of glass phase and gel phase pectin films. In the gel phase films, a constant velocity uniaxial load produced periodic premonitory acoustic emissions with coincident force variations (saw-tooth pattern). SEM images of the gel phase microarchitecture indicated the presence of slip planes. In …

research product

Structural and functional evidence for the scaffolding effect of alveolar blood vessels

A contribution of pulmonary blood distension to alveolar opening was first proposed more than 100 years ago. To investigate the contribution of blood distension to lung mechanics, we studied control mice (normal perfusion), mice after exsanguination (absent perfusion) and mice after varying degrees of parenchymal resection (supra-normal perfusion). On inflation, mean tracheal pressures were higher in the bloodless mouse (4.0α2.5 cmH2O); however, there was minimal difference between conditions on deflation (0.7α0.9 cmH2O). To separate the peripheral and central mechanical effects of blood volume, multi-frequency lung impedance data was fitted to the constant-phase model. The presence or abse…

research product

Mechanical Evidence Of Microstructural Remodeling During Post-Pneumonectomy Compensatory Lung Growth

research product

Cross-circulation and Cell Distribution Kinetics in Parabiotic Mice

Blood-borne nucleated cells participate not only in inflammation, but in tissue repair and regeneration. Because progenitor and stem cell populations have a low concentration in the blood, the circulation kinetics and tissue distribution of these cells is largely unknown. An important approach to tracking cell lineage is the use of fluorescent tracers and parabiotic models of cross-circulation. Here, we investigated the cross-circulation and cell distribution kinetics of C57/B6 GFP(+)/wild-type parabionts. Flow cytometry analysis of the peripheral blood after parabiosis demonstrated no evidence for a "parabiotic barrier" based on cell size or surface characterstics; all peripheral blood cel…

research product

Dynamic determination of oxygenation and lung compliance in murine pneumonectomy.

Thoracic surgical procedures in mice have been applied to a wide range of investigations, but little is known about the murine physiologic response to pulmonary surgery. Using continuous arterial oximetry monitoring and the FlexiVent murine ventilator, the authors investigated the effect of anesthesia and pneumonectomy on mouse oxygen saturation and lung mechanics. Sedation resulted in a dose-dependent decline of oxygen saturation that ranged from 55% to 82%. Oxygen saturation was restored by mechanical ventilation with increased rate and tidal volumes. In the mouse strain studied, optimal ventilatory rates were a rate of 200/minute and a tidal volume of 10 mL/kg. Sustained inflation pressu…

research product