0000000000009760
AUTHOR
Alexander Herlert
Towards high-accuracy mass spectrometry of highly charged short-lived ions at ISOLTRAP
Dedicated to H.-J. Kluge on the occasion of his 65th birthday anniversary - Jürgen Kluge Special Issue; Multiply charged ions of stable xenon isotopes from a plasma ion source have been mass-selected by the on-line mass separator ISOLDE/CERN and delivered to the triple-trap mass spectrometer ISOLTRAP. The doubly charged ions that survived the charge-exchange processes during bunching and ion preparation were transferred to a precision Penning trap for mass determination. Mass values were obtained for the isotopes with mass numbers A=126,129,130,136. They are consistent with previous results except for the case of $^{126}Xe$ where a significant deviation from the literature value was found. …
The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results
The highest precision in direct mass measurements is obtained with Penning trap mass spectrometry. Most experiments use the interconversion of the magnetron and cyclotron motional modes of the stored ion due to excitation by external radiofrequency-quadrupole fields. In this work a new excitation scheme, Ramsey's method of time-separated oscillatory fields, has been successfully tested. It has been shown to reduce significantly the uncertainty in the determination of the cyclotron frequency and thus of the ion mass of interest. The theoretical description of the ion motion excited with Ramsey's method in a Penning trap and subsequently the calculation of the resonance line shapes for differ…
Laser Investigations of Stored Metal Cluster Ions
The combination of ion storage in a Penning trap and photoexcitation by pulsed lasers has proven to be a versatile instrument in metal cluster research. Recent experiments which make use of both components allow a detailed study of the clusters' properties. In particular, a new method to measure dissociation energies is reviewed and preliminary results on the competition between electron emission and neutral monomer evaporation from dianionic metal clusters are presented.
Electron impact ionization/dissociation of size selected gold cluster cations
Abstract Singly charged gold clusters, Au n + in the size range n =12 to 72 have been captured and stored in a Penning trap, size selected and subjected to an electron beam. This interaction leads to further ionization as well as dissociation. The resulting abundance spectra of doubly and triply charged clusters show (a) a lower size limit for the production of multiply charged clusters from an ensemble of hot precursors, which can be understood in terms of the respective decay pathways, (b) an odd/even alternation of singly and doubly charged clusters in the size range below n =30, which inverses sign with change of charge state, and (c) magic numbers, i.e. prominent signals for particular…
Trianionic gold clusters
Using Penning-trap experiments and a shell-correction method incorporating ellipsoidal shape deformations, we investigate the formation and stability patterns of trianionic gold clusters. Theory and ex- periment are in remarkable agreement concerning appearance sizes and electronic shell eects. In contrast to multiply cationic clusters, decay of the trianionic gold clusters occurs primarily via electron autodetach- ment and tunneling through a Coulomb barrier, rather than via ssion. PACS. 36.40.Wa Charged clusters { 36.40.Qv Stability and fragmentation of clusters { 36.40.Cg Electronic and magnetic properties of clusters
Mass spectrometry and decay spectroscopy of isomers across the Z=82 shell closure
Recent results from a measurement campaign studying the isomerism in neutron-deficient Tl isotopes are presented. The measurements make use of a nuclear spectroscopy setup coupled to the high-resolution Penning-trap mass spectrometer ISOLTRAP at CERN's radioactive ion-beam facility ISOLDE. The mass values of 190,194Tl are improved and a mass-spin-state assignment is carried out. An additional mass measurement of the grandparent nuclide 198At allows the deduction of the spin-state ordering in 190Tl. As a result, the excitation energies of the isomers in both Tl isotopes are determined for the first time to Eex(194Tl)=260(15) keV and E ex(190Tl)=89(12) keV. Furthermore, this allows anchoring …
ISOLTRAP mass measurements of exotic nuclides at
The ISOLTRAP experiment at the ISOLDE facility at CERN is a Penning trap mass spectrometer for on-line mass measurements on short-lived radionuclides. It allows the determination of atomic masses of exotic nuclides with a relative uncertainty of only 10−8. The results provide important information for, e.g., weak interaction studies and nuclear models. Recent ISOLTRAP investigations and applications of high-precision mass measurements are discussed.
Decay pathways of small gold clusters
The decay pathway competition between monomer and dimer evaporation of photoexcited cluster ions Au + n, n = 2-27, has been investigated by photodissociation of size-selected gold clusters stored in a Penning trap. For n > 6 the two decay pathways are distinguished by their experimental signature in time-resolved measurements of the dissociation. For the smaller clusters, simple fragment spectra were used. As in the case of the other copper-group elements, even-numbered gold cluster ions decay exclusively by monomer evaporation, irrespective of their size. For small odd-size gold clusters, dimer evaporation is a competitive alternative, and the smaller the odd-sized clusters, the more likel…
Recent Exploits of the ISOLTRAP Mass Spectrometer
Abstract The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for bea…
Model-free determination of dissociation energies of polyatomic systems.
We describe and apply a new procedure that allows a direct determination of dissociation energies of polyatomic systems (clusters, fullerenes, polymers, and other molecules) without any modeling of the systems under investigation. As an example, we have determined the dissociation energies of a series of gold clusters Au(+)n. A comparison with values obtained from statistical models of unimolecular dissociation shows that these models significantly fail to describe the data. In contrast, the new method yields values which are an order of magnitude more accurate, thus allowing one to experimentally set benchmarks for any theory which attempts to describe activated processes.
Towards a magnetic field stabilization at ISOLTRAP for high-accuracy mass measurements on exotic nuclides
Abstract The field stability of a mass spectrometer plays a crucial role in the accuracy of mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of fluctuations are temperature variations in the vicinity of the trap and pressure changes in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the temperature and pressure fluctuations by at least an order of magnitude down to Δ T ≈ ± 5 mK and Δ p ≈ ± 5 Pa has been achieved, which corresponds to a relative magn…
Examining the N=28 shell closure through high-precision mass measurements of Ar46–48
The strength of the $N=28$ magic number in neutron-rich argon isotopes is examined through high-precision mass measurements of $^{46\text{--}48}\mathrm{Ar}$, performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN. The new mass values are up to 90 times more precise than previous measurements. While they suggest the persistence of the $N=28$ shell closure for argon, we show that this conclusion has to be nuanced in light of the wealth of spectroscopic data and theoretical investigations performed with the SDPF-U phenomenological shell model interaction. Our results are also compared with ab initio calculations using the valence space in-medium similarity renormalization group and the s…
Isoltrap pins down masses of exotic nuclides
The mass of radionuclides contribute to a variety of fundamental studies including tests of the weak interaction and the Standard Model. The limits of mass measurements of exotic nuclides have been extended considerably by the Penning-trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN. Recent ISOLTRAP measurements are summarized and current technical improvements are outlined.
Electronic effects in the production of smali dianionic gold clusters by electron attachment on to stored Au-n, n = 12-28
Abstract Single charged gold clusters Au n -, 12 n 28, are stored in a Penning trap, size selected and transformed into dianions, Au2- n by the application of an electron beam. At the onset of dianion production, that is that range of cluster sizes n where the smallest doubly charged clusters are observed, the measured intensity ratio of the dianions to their precursors is not a continuous function of cluster size. Instead, there is a strong odd-even effect and a comparatively intense signal of Au2-18 The observed structures are very reminiscent of similar phenomena in the abundance spectra of metal clusters as observed by Knight et al. (1984, Phys. Rev. Lett., 52, 2141), which gave ris…
Surveying the N=40 island of inversion with new manganese masses
High-precision mass measurements of neutron-rich 57−66Mn and 61−63Fe isotopes are reported. The new mass surface shows no shell closure at N=40. In contrast, there is an increase of the two-neutron separation energy at N=38. This behavior is consistent with the onset of collectivity due to the occupation of intruder states from higher orbits, in analogy with the well known “island of inversion” around N=20. Our results indicate that the neutron-rich Mn isotopes, starting from 63Mn, are most likely within the new island of inversion. From the new mass surface, we evaluate the empirical proton-neutron interaction and the pairing gap, both playing a significant role in the structural changes i…
Multisequential photofragmentation of size-selected gold cluster ions
Time-resolved fragmentation measurements have been performed on stored, size-selected gold cluster ions ${\mathrm{Au}}_{n}^{+}$ $(n=17--21)$ that have been excited up to 15 eV by multiphoton absorption. These excitation energies are far above the clusters' dissociation thresholds and initiate multistep sequential unimolecular dissociation by evaporation of neutral monomers. The measurements allow for the determination of a combination of kinetic-energy release and radiative cooling of the excited clusters. Also, previously determined model-independent values of the cluster dissociation energies are confirmed by the present measurements. The data are consistent with thermal values of the kin…
New approaches to stored cluster ions
Ion traps are “wall-less containers” which allow the extended storage of selected species. During the storage various interaction steps may be repeatedly applied. To this end no further hardware has to be added - in contrast to beam experiments. In this progress report two examples of recent developments are presented: the experiments have been performed with metal clusters stored in a Penning (ion cyclotron resonance) trap. A new experimental scheme has been developed which allows precision measurements of the dissociation energies of polyatomic species. It has been triggered by investigations on the delayed photodissociation of stored metal clusters. However, the technique is also readily…
Multiply charged metal cluster anions
Formation, stability patterns, and decay channels of silver dianionic and gold trianionic clusters are investigated with Penning-trap experiments and a shell-correction method including shape deformations. The theoretical predictions pertaining to the appearance sizes and electronic shell effects are in remarkable agreement with the experiments. Decay of the multiply anionic clusters occurs predominantly by electron tunneling through a Coulomb barrier, rather than via fission, leading to appearance sizes unrelated to those of multiply cationic clusters.
Model-independent determination of dissociation energies: method and applications
A number of methods are available for the purpose of extracting dissociation energies of polyatomic particles. Many of these techniques relate the rate of disintegration at a known excitation energy to the value of the dissociation energy. However, such a determination is susceptible to systematic uncertainties, mainly due to the unknown thermal properties of the particles and the potential existence of 'dark' channels, such as radiative cooling. These problems can be avoided with a recently developed procedure, which applies energy-dependent reactions of the decay products as an uncalibrated thermometer. Thus, it allows a direct measurement of dissociation energies, without any assumption …
Critical-Point Boundary for the Nuclear Quantum Phase Transition NearA=100from Mass Measurements ofKr96,97
Mass measurements of (96,97)Kr using the ISOLTRAP Penning-trap spectrometer at CERN-ISOLDE are reported, extending the mass surface beyond N=60 for Z=36. These new results show behavior in sharp contrast to the heavier neighbors where a sudden and intense deformation is present. We interpret this as the establishment of a nuclear quantum phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy.
Investigation of Space-Charge Phenomena in Gas-Filled Penning Traps
The centering of ions in Penning traps by a quadrupolar radiofrequency excitation in the presence of a buffer gas has been studied in the regime of high charge‐densities. It is found to deviate significantly from the single‐particle situation. In particular, the efficiency of the cooling process is affected as well as the resolving power. The behavior has been studied experimentally at the preparation trap REXTRAP and the high‐precision Penning trap setup ISOLTRAP both located at the on‐line mass separator ISOLDE at CERN. In addition, the phenomenon has been investigated numerically by a custom‐designed simulation.
Absolute cross-sections for the nonresonant multi-photon ionization of toluene and xylene in the gas phase
Abstract The absolute multi-photon ionization cross-section of the phenyl ring was determined by laser-ionization of toluene and xylene molecules in the gas phase. Excitation was achieved using nonresonant four-photon absorption of the frequency doubled light of a 10 ns pulsed Nd:YAG laser (532 nm). The resulting ions were stored in a Penning trap and detected by time-of-flight mass spectrometry. The values of the cross-sections are 1.4(3)×10 −42 cm 8 W −4 s −1 and 1.3(3)×10 −42 cm 8 W −4 s −1 for toluene and xylene, respectively.
Dissociation energies of silver clusters Agn+, n=14, 15, 16, 18
A recently developed method to determine dissociation energies has been applied to positively charged silver clusters of size n=14, 15, 16 and 18. The method uses a combination of sequential and single step decays. It requires an uncalibrated thermometer which here is provided by the evaporation rate constants of the product clusters. For this purpose, earlier measurements [J. Chem. Phys. 57 (1998) 2786] are reanalyzed with the new method. The resulting dissociation energies are compared with the liquid drop values and the measured decay rate constants with expected rate constants from detailed balance theory.
Photodissociation of small group-11 metal cluster ions: Fragmentation pathways and photoabsorption cross sections
Noble metal cluster ions Cu(n)(+), Ag(n)(+) and Au(n)(+) (n = 3-21) have been stored in a Penning trap and photodissociated by low intensity laser pulses of 10 ns at photon energies of 3.49 eV and 4.66 eV. The fragmentation pathways, neutral monomer and dimer evaporation, have been monitored as a function of cluster size, excitation energy and element. It is found that the behavior of the branching ratio between monomer and dimer evaporation as a function of excitation energy depends on the metal under investigation. In particular, the slope of the energy dependence is positive for silver but negative for gold and copper cluster ions. Furthermore, photoabsorption cross sections are determin…
First Glimpse of the N=82 Shell Closure below Z=50 from Masses of Neutron-Rich Cadmium Isotopes and Isomers
We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}\mathrm{Cd}$ offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}\mathrm{Sn}$. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}\mathrm{Cd}$ and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalizat…
Time-separated oscillatory fields for high-precision mass measurements on short-lived Al and Ca nuclides
High-precision Penning trap mass measurements on the stable nuclide 27Al as well as on the short-lived radionuclides 26Al and 38,39Ca have been performed by use of radiofrequency excitation with time-separated oscillatory fields, i.e. Ramsey's method, as recently introduced for the excitation of the ion motion in a Penning trap, was applied. A comparison with the conventional method of a single continuous excitation demonstrates its advantage of up to ten times shorter measurements. The new mass values of 26,27Al clarify conflicting data in this specific mass region. In addition, the resulting mass values of the superallowed beta-emitter 38Ca as well as of the groundstate of the beta-emitte…
The influence of internal degrees of freedom on the unimolecular decay of the molecule–cluster compound Au8+CH3OH
Time-resolved photodissociation measurements of the sequential reaction Au8+CH3OH→Au8+→Au7+ and the direct reaction Au8+→Au7+ have been performed for several excitation energies. The production rates and yields of the final state Au7+ in the sequential process are strongly influenced by the excitation energy deposited into the evaporated methanol molecule during the initial fragmentation step. Both the rate constants and yields can be fitted with a single parameter, the cluster–methanol binding energy.
Approaching theN=82shell closure with mass measurements of Ag and Cd isotopes
Mass measurements of neutron-rich Cd and Ag isotopes were performed with the Penning trap mass spectrometer ISOLTRAP. The masses of ${}^{112,114\ensuremath{-}124}$Ag and ${}^{114,120,122\ensuremath{-}124,126,128}$Cd, determined with relative uncertainties between $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}$ and $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}7}$, resulted in significant corrections and improvements of the mass surface. In particular, the mass of $^{124}\mathrm{Ag}$ was previously unknown. In addition, other masses that had to be inferred from $Q$ values of nuclear decays and reactions have now been measured directly. The analysis includes various mass…
Observation of multiply charged silver-cluster anions
Singly charged silver-cluster anions are produced in a laser vaporization source and transferred into a Penning trap. After size selection the clusters are subjected to an electron bath in the trap, which results in the attachment of further electrons. The relative abundance of dianions or trianions as a function of the clusters' size is analyzed by time-of-flight mass spectrometry. Silver-cluster dianions are observed for sizes n≥ 24 and trianions for n > 100. In addition, a detailed study of the cluster sizes 24 ?n? 60 shows a pronounced resistance to electron attachment for singly charged anions Agn- with a closed electronic shell, in particular Ag29-, Ag33-, and Ag39-. Both the threshol…
The influence of the trapping potential on the attachment of a second electron to stored metal cluster and fullerene anions
Abstract Singly charged anionic clusters are exposed to a bath of simultaneously stored electrons in ion cyclotron resonance (Penning) traps and thus, dianions are produced. The dianion yield is found to be a function of the potential well depth. As an example, the attachment of electrons to size-selected gold cluster anions Au 25 1− from a laser vaporization source has been studied in detail by time-of-flight mass analysis after ejection of all ions from the trap. Furthermore, the investigation is extended to fullerene anions C 70 1− that are produced by laser desorption from a fullerene target in the external source of a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer…
The elliptical Penning trap: Experimental investigations and simulations
Abstract The application of an additional azimuthal quadrupolar electrostatic field to a Penning trap leads to a field configuration referred to as an elliptical Penning trap. The resulting changes of the radial ion motions have been investigated experimentally and by use of simulations. The eigenfrequencies, i.e., the magnetron frequency ω ˜ − and the reduced cyclotron frequency ω ˜ + , are found to be shifted with respect to those of the standard Penning trap ω − , ω + , respectively. As the shift of the magnetron frequency ω ˜ − is larger than that of the reduced cyclotron frequency ω ˜ + their sum ω ˜ + + ω ˜ − is also a function of the ellipticity and no longer equal to the cyclotron f…
Decay of theN=126, Fr213nucleus
gamma rays following the EC/beta(+) and alpha decay of the N = 126, Fr-213 nucleus have been observed at the CERN isotope separator on-line (ISOLDE) facility with the help of gamma-ray and conversion-electron spectroscopy. These gamma rays establish several hitherto unknown excited states in Rn-213. Also, five new a-decay branches from the Fr-213 ground state have been discovered. Shell model calculations have been performed to understand the newly observed states in Rn-213.
High-precision Penning-trap mass measurements of heavy xenon isotopes for nuclear structure studies
With the double Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN the masses of the neutron-rich isotopes $^{136\ensuremath{-}146}\mathrm{Xe}$ were measured with a relative uncertainty of the order of ${10}^{\ensuremath{-}8}$ to ${10}^{\ensuremath{-}7}$. In particular, the masses of $^{144\ensuremath{-}146}\mathrm{Xe}$ were measured for the first time. These new mass values allow one to extend calculations of the mass surface in this region. Proton-Neutron interaction strength, obtained from double differences of binding energies, relate to subtle structural effects, such as the onset of octupole correlations, the growth of collectivity, and its relation to the underlying shell model l…
Cluster calibration in mass spectrometry: laser desorption/ionization studies of atomic clusters and an application in precision mass spectrometry.
For accurate mass measurements and identification of atomic and molecular species precise mass calibration is mandatory. Recent studies with laser desorption/ionization and time-of-flight analysis of cluster ion production by use of fullerene and gold targets demonstrate the generation of atomic clusters for calibration purposes. Atomic ion results from the Penning trap mass spectrometer ISOLTRAP, in which a carbon cluster ion source has recently been installed, are presented as an application in the field of precision mass spectrometry.
High-precision masses of neutron-deficient rubidium isotopes using a Penning trap mass spectrometer
The atomic masses of the neutron-deficient radioactive rubidium isotopes $^{74-77,79,80,83}$Rb have been measured with the Penning trap mass spectrometer ISOLTRAP. Using the time-of-flight cyclotron resonance technique, relative mass uncertainties ranging from $1.6 \times 10^{-8}$ to $5.6 \times 10^{-8}$ were achieved. In all cases, the mass precision was significantly improved as compared with the prior Atomic-Mass Evaluation; no significant deviations from the literature values were observed. The exotic nuclide $^{74}$Rb with a half-life of only 65 ms, is the shortest-lived nuclide on which a high-precision mass measurement in a Penning trap has been carried out. The significance of these…
Structures ofPo201andRn205from EC/β+-decay studies
Several low-lying excited states in {sub 86}{sup 205}Rn{sub 119} and {sub 84}{sup 201}Po{sub 117} were identified for the first time following EC/{beta}{sup +} decay of {sup 205}Fr and {sup 201}At, respectively, using {gamma}-ray and conversion electron spectroscopy at the CERN isotope separator on-line (ISOLDE) facility. The EC/{beta}{sup +} branch from {sup 205}Fr was measured to be 1.5(2)%. The excited states of the daughter nuclei are understood in terms of the odd nucleon coupling to the neighboring even-even core. The neutron single-particle energies of the p{sub 3/2} orbital relative to the f{sub 5/2} ground state in {sup 205}Rn, and the f{sub 5/2} orbital relative to the p{sub 3/2} …
Determination of dissociation energies by use of energy-dependent decay pathway branching ratios
Abstract We present a method for the determination of dissociation energies of polyatomic systems that undergo sequential fragmentation with energy-dependent decay pathway branching. It allows to experimentally determine the dissociation energy of any polyatomic system that shows such fragmentation behaviour without the need for a specific modelling of the system or of its fragmentation process, thus eliminating several systematic errors of traditional methods. The new method has been applied to the sequential fragmentation of Au+14 and Au+16. The resulting dissociation energies are highly accurate and in good agreement with model-free values based on rates of sequential decays.
Restoration of theN=82Shell Gap from Direct Mass Measurements ofSn132,134
A high-precision direct Penning trap mass measurement has revealed a 0.5-MeV deviation of the binding energy of (134)Sn from the currently accepted value. The corrected mass assignment of this neutron-rich nuclide restores the neutron-shell gap at N=82, previously considered to be a case of "shell quenching." In fact, the new shell gap value for the short-lived (132)Sn is larger than that of the doubly magic (48)Ca which is stable. The N=82 shell gap has considerable impact on fission recycling during the r process. More generally, the new finding has important consequences for microscopic mean-field theories which systematically deviate from the measured binding energies of closed-shell nu…
Mass spectrometry of atomic ions produced by in-trap decay of short-lived nuclides
The triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN has demonstrated the feasibility of mass spectrometry of in-trap-decay product ions. This novel technique gives access to radionuclides, which are not produced directly at ISOL-type radioactive ion beam facilities. As a proof of principle, the in-trap decay of $^{37}K^+$ has been investigated in a Penning trap filled with helium buffer gas. The half-life of the mother nuclide was confirmed and the recoiling $^{37}Ar^+$ daughter ion was contained within the trap. The ions of either the mother or the daughter nuclide were transferred to a precision Penning trap, where their mass was determined.
Damping effects in Penning trap mass spectrometry
Abstract Collisions of ions with residual gas atoms in a Penning trap can have a strong influence on the trajectories of the ions, depending on the atom species and the gas pressure. We report on investigations of damping effects in time-of-flight ion-cyclotron resonance mass spectrometry with the Penning trap mass spectrometers ISOLTRAP at ISOLDE/CERN (Geneva, Switzerland) and SHIPTRAP at GSI (Darmstadt, Germany). The work focuses on the interconversion of the magnetron and cyclotron motional modes, in particular the modification of the resonance profiles for quadrupolar excitation due to the damping effect of the residual gas. Extensive experiments have been performed with standard and Ra…
Trap-assisted decay spectroscopy with ISOLTRAP
Penning traps are excellent high-precision mass spectrometers for radionuclides. The high-resolving power used for cleaning isobaric and even isomeric contaminants can be exploited to improve decay-spectroscopy studies by delivering purified samples. An apparatus allowing trap-assisted decay spectroscopy has been coupled to the ISOLTRAP mass spectrometer at ISOLDE/CERN. The results from studies with stable and radioactive ions show that the setup can be used to perform decay studies on purified short-lived nuclides and to assist mass measurements. (C) 2012 Elsevier B.V. All rights reserved.
High-accuracy mass measurements of neutron-rich Kr isotopes
The atomic masses of the neutron-rich krypton isotopes {sup 84,86-95}Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes {sup 94}Kr and {sup 95}Kr were measured for the first time. The masses of the radioactive nuclides {sup 89}Kr and {sup 91}Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.
Recent gold cluster studies in a Penning trap
Abstract A progress report is given on the investigation of metal clusters with an ion cyclotron resonance (Penning) trap. The examples are taken from the recent studies on gold clusters. In particular, the monomer and dimer evaporation is monitored as a function of cluster size. For the particular case of Au 7 + this study is expanded to include the energy dependence of the branching ratio. In connection with the sequential decay of Au 8 + the information can be used for a model-free determination of the dissociation energy of Au 8 + . A second line of studies concerns the production, properties and storage behavior of polyanionic gold clusters. Such species have recently been produced by …
Photoinduced dissociation of anionic and electron detachment of dianionic gold clusters by use of a laser pointer
Abstract Size-selected anionic and dianionic gold clusters have been stored in a Penning trap and irradiated with the green light of a laser pointer. As examples of special interest, the systems Au 7 − and Au 29 2− have been chosen. In particular, Au 7 − , a small gold cluster with closed electron shell, is observed to decay into Au 6 − and Au 5 − with a decay pathway branching ratio similar to that of Au 9 + . The dianionic cluster Au 29 2− shows electron detachment upon photoexcitation. This observation is in agreement with independent experiments [Stoermer et al., Int. J. Mass Spectrom. 201 (2001) 63], where Au 29 2− is found to be the smallest dianion produced by neutral monomer evapora…
Production of dianionic and trianionic noble metal clusters in a Penning trap
Abstract Metal clusters, Aun−, Agn−, and Cun−, from a laser vaporization source are transferred to a Penning trap and subjected to a bath of simultaneously stored electrons. After some reaction period multiply charged anionic gold, silver, and copper clusters are observed if the clusters under investigation are large enough. The cluster sizes for the onset of the formation of dianions and trianions are compared to a charged sphere model. The description of the experimental findings is largely improved if the repulsive Coulomb barrier is taken into account which prevents autodetachment of the surplus electrons on the experimental time scale of a second.
Decay pathways of stored metal-cluster anions after collisional activation
Size-selected gold clusters, Open image in new window (n ≤ 21), and tungsten clusters, Open image in new window , and Open image in new window (n = 4 – 8 and 12), stored in a Penning trap have been collisionally activated. Neutral monomer and dimer evaporation are observed in the case of gold. While no fragment products have been observed for tungsten clusters, there is evidence of electron emission from the anions.
First Observation of Doubly Charged Negative Gold Cluster Ions
Singly charged gold cluster anions in the size range n = 16–30 have been captured, stored and size selected in a Penning trap. After application of an electron beam doubly charged gold cluster anions have been observed for 20 ≤ n ≤ 30. To our knowledge this is the first observation of metal cluster dianions. The threshold appearance size is in good agreement with a simple charged sphere model. The application of argon gas pulses simultaneously with the electron beam is found to increase the production rate by an order of magnitude.
ISOLTRAP Mass Measurements for Weak-Interaction Studies
International audience; The conserved-vector-current (CVC) hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are two fundamental postulates of the Standard Model. While existing data on CVC supports vector current conservation, the unitarity test of the CKM matrix currently fails by more than two standard deviations. High-precision mass measurements performed with the ISOLTRAP experiment at ISOLDE/CERN provide crucial input for these fundamental studies by greatly improving our knowledge of the decay energy of super-allowed beta decays. Recent results of mass measurements on the beta emitters 18Ne, 22Mg, 34Ar, and 74Rb as pertaining to weak-i…
Energy dependence of the decay pathways of optically excited small gold clusters
The pathway competition between neutral monomer and neutral dimer evaporation from optically excited odd-size gold cluster ions Au+ n, n=7–15, has been investigated as a function of cluster size and excitation energy. Gold cluster ions of these sizes are the only ones to show observable pathway competition while all other sizes exclusively evaporate either neutral monomers or neutral dimers. The investigation has been performed by photoexcitation of stored size-selected gold cluster ions with a single 10-ns laser pulse. Subsequent time-resolved observation of the delayed dissociation allows us to quantitatively determine the relative fragment yields of the respective decay channels as a fun…
Dimer dissociation energies of small odd-size clusters
The dimer dissociation energies of gold cluster ions Au + n , n = 9, 11, 13, 15 have been determined with an extension of a recently developed model-independent method. Monomer-dimer decay pathway branching ratios provide the energy dependent process which is needed in this method. The measured values are D 2 ( Au + 9 ) = 3.66(8)(9) eV, D 2 ( Au + 11 ) = 4.27(11)(8) eV, D 2 ( Au + 13 ) = 4.50(9)(7) eV and D 2 ( Au + 15 ) = 4.29(10)(6) eV.
High-accuracy mass measurements on neutron deficient neon isotopes
International audience; The atomic masses of the short-lived nuclides 17Ne and 19Ne have been measured with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The obtained mass excess for both nuclides deviates significantly from the literature value, in the case of 17Ne about 40 keV. The mass value of 17Ne can be applied for a test of the isobaric multiplet mass equation with respect to an isospin T = 3/2 quartet. In addition, both masses can contribute to the data analysis of collinear laser-spectroscopy experiments where mean-square nuclear-charge radii are determined.
FT-ICR MS studies of ion-molecule reactions of Ru+ and Os+ with oxygen
Abstract The reactions of stored ruthenium and osmium cations with oxygen have been studied in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. In case of osmium the reaction products OsO+ and OsO 2 + have been observed and corresponding reaction-rate constants have been determined. In addition, there is an unreactive fraction of Os+ ions due to the presence of a slightly endothermic reacting ground state. Only the excited states react with oxygen. For ruthenium no spontaneous reaction with oxygen has been observed unless the cyclotron motion of Ru+ was excited. The results are discussed with respect to a similar investigation in a Penning trap-TOF mass spectrometer […