0000000000009934
AUTHOR
V. La Carrubba
Polymeric scaffolds prepared via Thermally Induced Phase Separation (TIPS): Tuning of structure and morphology
Scaffolds suitable for tissue engineering applications were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the metastable region), a holding stage for a given residence time and a final quench from the demixing temperature to a low temperature (within the unstable region). A large variety of morphologies, in terms of average pore size and interconnection, were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleation and growth processes dur…
Preparation of polymeric foams with a pore size gradient via Thermally Induced Phase Separation (TIPS)
Abstract Foams with a pore size gradient are promising materials for tissue engineering applications where a complex architecture involving morphological variations in space must be mimicked, e.g. in bone tissue repair. In this paper, a technique to obtain a porous scaffold with a pore size gradient is presented. The preparation procedure is based on Thermally Induced Phase Separation (TIPS), by imposing a different thermal history on the two sides of a polymeric solution. In this way, a gradient in thermal history is produced, which will generate a pore size monotonously varying along scaffold thickness. By controlling some parameters easy to manipulate, such as demixing temperature and/or…
PLLA biodegradable scaffolds for angiogenesis via Diffusion Induced Phase Separation (DIPS)
A critical obstacle in tissue engineering is the inability to maintain large masses of living cells upon transfer from the in vitro culture conditions into the host in vivo. Capillaries, and the vascular system, are required to supply essential nutrients, including oxygen, remove waste products and provide a biochemical communication “highway”. For this reason it is mandatory to manufacture an implantable structure where the process of vessel formation – the angiogenesis – can take place. In this work PLLA scaffolds for vascular tissue engineering were produced by dip-coating via Diffusion Induced Phase Separation (DIPS) technique. The scaffolds, with a vessel-like shape, were obtained by p…
Calcium phosphate/polyvinyl acetate coatings on SS304 via galvanic co-deposition for orthopedic implant applications
Abstract In this work, the galvanic deposition method is used to deposit coatings of brushite/hydroxyapatite/polyvinyl acetate on 304 stainless steel. Coatings are obtained at different temperatures and with different sacrificial anodes, consisting of a mixture of brushite and hydroxyapatite. Samples are aged in a simulated body fluid (SBF), where a complete conversion of brushite into hydroxyapatite with a simultaneous change in morphology and wettability occurred. The corrosion tests show that, compared with bare 304, the coating shifts Ecorr to anodic values and reduces icorr Ecorr, and icorr has different values at different aging times due to chemical interactions at the solid/liquid i…
No-Flow Temperature in Injection Molding Simulation
Most injection molding simulation packages use the no-flow temperature (NFT) as a means of determining whether the polymer flows or is solid. The NFT is not well defined, and a standard method for measuring it does not exist. A sensitivity analysis of the filling stage has been carried out with two different packages [VISI Flow (Vero Software Limited, Gloucestershire, UK) and Moldflow (Autodesk, Inc., San Rafael, CA)] to estimate the influence of the NFT on the main processing parameters. The NFT has a large influence on the thickness of the frozen layer, but it does not appreciably affect the filling pressure. Because the NFT affects the frozen layer, an effect on the estimation of shrinka…
A poly-L-lactic acid/ collagen/glycosaminoglycan matrix for tissue engineering applications
Adhesion of tissue cells to biomaterials is a prerequisite of paramount importance for the effectiveness of a tissue engineering construct (cell and scaffolds). Functionalization of polymeric scaffolds with organic polymers, such as collagen or proteoglycans, is a promising approach in order to improve the cytocompatibility. As a matter of fact, organic polymers, isolated directly from the extracellular matrix, contain a multitude of surface ligand (fibronectin, laminin, vitronectin) and arginine–glycine–aspartic acid-containing peptides that promote cell adhesion. In tissue engineering, the combination of organic and synthetic polymers gives rise to scaffolds characterized simultaneously …
Phenomenological approach to compare the crystallization kinetics of isotactic polypropylene and polyamide-6 under pressure
Reliable experimental data for semicrystalline polymers crystallized under pressure are supplied on the basis of a model experiment in which drastic solidification conditions are applied. The influence of the pressure and cooling rate on some properties, such as the density and microhardness, and on the product morphology, as investigated with wide-angle X-ray scattering (WAXS), is stressed. Results for isotactic polypropylene (iPP) samples display a lower density and a lower microhardness with increasing pressure over a wide range of cooling rates (from 0.01 to 20 °C/s). Polyamide-6 (PA6) samples exhibit the opposite behavior, with the density and microhardness increasing at higher pressur…
Measurement of cloud point temperature in polymer solutions.
A temperature-controlled turbidity measurement apparatus for the characterization of polymer solutions has been instrumented and set up. The main features are the coupled temperature-light transmittance measurement and the accurate temperature control, achieved by means of peltier cells. The apparatus allows to measure cloud point temperatures by adopting different cooling protocols: low rate for quasi-equilibrium measurements and high rate for detect kinetic effects. A ternary polymeric solution was adopted as case study system showing that cooling rate affects the measured cloud point temperature.
Some Features of Polymeric Membranes for Water Purification via Membrane Distillation
Polymeric membranes are currently adopted in water purification processes, such as reverse osmosis (RO) and membrane distillation (MD). This latter technique is very promising for separation effectiveness and energy savings. A valuable and effective MD unit must be equipped with polymeric membranes that exhibit specific properties, for example, hydrophobicity, a narrow pore size range, a high water penetration pressure, and a large vapor permeability. In this work, we present and examine the main features of membranes for MD processes, with the aim of experimentally evaluating the related performances. Scanning electron microscopy analysis was carried out for a first estimate of the pore si…
CHARACTERIZATION OF HYDROPHOBIC POLYMERIC MEMBRANES FOR MEMBRANE DISTILLATION PROCESS
Hydrophobic microporous membranes are utilized in membrane distillation (MD) processes, e.g. seawater desalination at moderate temperatures. The vapour permeability of commercial hydrophobic membranes with different pore sizes (0.2-1 micron) was characterized through a simple apparatus designed-on-purpose. A cylindrical vessel had a face closed by the membrane and the other connected to a thin graduate tube. The water level variation in the tube is recorded and related to the vapour flux across the membrane. Measurements were taken in the temperature range 20-80°C. A fan tangential to membrane surface was employed to maintain a constant driving force for vapour transport. Vapour flux did no…
In vitro bioactivity study of composite scaffold prepared via thermally induced phase separation
Among porous materials suitable for Bone Tissue Engineering (BTE) scaffolds, bioactive ceramics (hydroxyapatite, HA) and bioactive glasses (BG) have been used for their excellent biocompatibility, bioactivity and efficient osteointegration (1). However, their major limitations are brittleness, low mechanical stability and low dissolution rate (2). Recent evidences suggest that composite scaffold based on biodegradable polymers (e.g. Poly-lacticacid (PLLA)) simultaneously loaded with HA and BG hold promising potential as efficient osteoconductive implants (3, 4). In this work we investigated the possibility to produce composite PLLA-HA-BG scaffolds via Thermally Induced Phase Separation (TIP…
Polymeric scaffolds prepared via thermally induced phase separation: Tuning of structure and morphology
Scaffolds suitable for tissue engineering applications like dermal reconstruction were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the metastable region), a holding stage for a given residence time, and a final quench from the demixing temperature to a low temperature (within the unstable region). A large variety of morphologies, in terms of average pore size and interconnection, were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleat…
Solidification of syndiotactic polystyrene by a continuous cooling transformation approach
Syndiotactic polystyrene (sPS) was solidified from the melt under drastic conditions according to a continuous cooling transformation methodology developed by the authors, which covered a cooling rate range spanning from approximately 0.03 to 3000 °C/s. The samples produced, structurally homogeneous across both their thickness and surface, were analyzed by macroscopic methods, such as density, wide-angle X-ray diffraction (WAXD), and microhardness (MH) measurements. The density was strictly related to the phase content, as confirmed by WAXD deconvolution. The peculiar behavior encountered (the density first decreasing and then increasing with the cooling rate) was attributed to the singular…
Optimization of environmental conditions for kefiran production by kefir grain as scaffold for tissue engineering
The aim of this work was to investigate the fermentation medium and environmental requirements for the production of exopolysaccharide (EPS) Kefiran from natural culture (Kefir grains). We have found that the fermentation medium and temperature are critical for Kefiran production during the 24 h cultivation of kefir grains. The Kefiran obtained from fat cow milk was used to evaluate its potential application as scaffold for tissue engineering. Kefiran scaffold were obtained via solvent casting and direct quenching. Thermal and morphology features were evaluated by DSC and SEM, respectively.
Evaluation of hydroxyapatite distribution in a Poly-L-Lactic Acid (PLLA) scaffolds via Micro Computed Tomography (µCT)
Bone Tissue Engineering offers promising clinical alternative substitutes for bone defects, focusing on the use of polymer/ceramic composites. Hydroxyapatite (HA), a bioactive ceramic, has been implemented in bone substitution and regeneration due to its biocompatibility, osteoconductivity and close resemblance to the mineralized phase of human bone. Several techniques have been adopted to characterize composite scaffolds in terms of morphology, pore size and interconnection, filler content and distribution, but most of them are destructives. In this work, composite Poly-L-Lactic Acid (PLLA)-HA scaffolds (17.6 mm diameter and35.7 mm height) were prepared via Thermally Induced Phase Separati…
Effect of pressure on the PVT behaviour of iPP as revealed by dilatometric measurements
Isotactic Poly-propylene samples, previously prepared under known conditions of pressure and cooling rate by means of a special apparatus designed and set-up by the authors, were subjected to several isobaric runs at low cooling and heating rate in a confining fluid dilatometer (by GNOMIX). The effect of the previous thermo-mechanical histories and the effect of pressure in the dilatometry on specific volume of the samples was studied. Results show that the initial specific volume depends upon the previous thermo-mechanical histories, which however cancels out after the first heating run. Moreover the reported dilatometric experimental data support the evidence that an increase of pressure …
Water Fluxes in Polymeric Membranes for Desalination via Membrane Distillation
Membrane distillation is an emerging technique for seawater desalination. Hydrophobic polymeric membranes are used to separate the solute‐free water vapour from the hot solution. Vapour fluxes of commercial polymeric membranes were measured in various conditions, i.e. natural and forced convection and vacuum. Vapour fluxes were also predicted with models and compared with experimentals. Higher fluxes were recorded in vacuum conditions.
Polymer Solidification under Pressure and High Cooling Rates
Abstract Polymer solidification under processing conditions is a complex phenomenon in which the kinetics of flow, high thermal gradients and high pressures determine the product morphology. The study of polymer structure formed under pressure has been mainly made using conventional techniques such as dilatometry and differential scanning calorimetry under isothermal conditions or non isothermal conditions but at cooling rates several orders of magnitude lower than those experienced in industrial processes. A new equipment has been recently developed and improved to study the crystallization of polypropylene when subjected to pressure and cooled rapidly. An experimental apparatus essentiall…
The continuous cooling transformation (CCT) as a flexible tool to investigate polymer crystallization under processing conditions
An experimental route for investigating polymer crystallization over a wide range of cooling rates (from 0.01 to 1000◦C/s) and pressures (from 0.1 to 40 MPa) is illustrated, using a method that recalls the approach adopted in metallurgy for studying structure development in metals. Two types of experimental setup were used, namely an apparatus for fast cooling of thin films (100–200 μm thick) at various cooling rates under atmospheric pressure and a device (based on a on-purpose modified injection molding machine) for quenching massive samples (about 1–2 cm3) under hydrostatic pressure fields. In both cases, ex situ characterization experiments were carried out to probe the resulting struct…
Isotactic polypropylene solidification under pressure and high cooling rates. A master curve approach
Solidification in industrial processes very often involves flow fields, high thermal gradients and high pressures: the development of a model able to describe the polymer behavior becomes complex. Recently a new equipment has been developed and improved to study the crystallization of polymers when quenched under pressure. An experimental apparatus based on a modified, special injection moulding machine has been employed. Polymer samples can be cooled at a known cooling rate up to 100 °C/s and under a constant pressure up to 40 MPa. Density, Micro Hardness (MH), Wide angle X-ray diffraction (WAXD), and annealing measurements were then used to characterize the obtained sample morphology. Res…
Dependence of Coefficient of volumetric thermal expansion (CVTE) of glass fiber reinforced (GFR) polymers on the glass fiber content
In a Glass Fiber Reinforced (GFR) polymer, the coefficient of volumetric thermal expansion CVTE (determined as a sum of the coefficients of linear thermal expansion CLTE’s for the three principal directions) is sometimes much smaller than the value predictable on the basis of well acquainted models, such as Chow model, taking into account fibers anisotropy and aspect ratio.
Biological evaluation of PLLA membranes, with different pore diameters, to stimulate cell adhesion and growth in vitro
Polymeric membranes prepared via DIPS (Diffusion Induced Phase Separation) are widely studied and utilized as scaffolds for the regeneration of tissue. In this work, poly (L)-lactide membrane are prepared through a DIPS protocol starting from a ternary solution made of polymer, dioxane (solvent) and water (non-solvent). A three-dimensional, porous and mechanically stable membrane is desirable for ingrowth of human bronchial epithelial cells. Polymeric membranes prepared via DIPS (Diffusion Induced Phase Separation) are widely studied and utilized as scaffolds for the regeneration of tissue. In this work, poly (L)-lactide membrane are prepared through a DIPS protocol starting from a ternary …
Tubular composite scaffolds produced via Diffusion Induced Phase Separation (DIPS) as a shaping strategy for anterior cruciate ligaments reconstruction
Injuries of tendons and ligaments are common, especially among the young population. Anterior cruciate ligament (ACL) injuries do not heal due to its limited vascularization and hence, surgical intervention is usually required. The ideal scaffold for ligament tissue engineering (TE) should be biocompatible and possess mechanical and functional characteristics comparable to the native ACL. The Diffusion Induced Phase Separation (DIPS) technique allows the preparation of homogenous porous tubular scaffold with micro-pores using a rather simple procedure. Composites based on biodegradable polymers and bioglass have attracted much attention in tissue reconstruction and repair because of their b…
Hydroxyapatite/Chitosan/Collagen coatings through galvanic coupling
In this work, the attention was focused on Hydroxyapatite/ Chitosan/Collagen composite as biocoatings for application in orthopaedic devices. Hydroxyapatite was selected for its osteoconductivity due to its chemical structure similar to bones. Collagen has the same function since 90-95% of bone matrix is constituted of collagen fibers. Furthermore, chitosan are largely used yet in medical field (e.g. antibacterial agent or drug deliver) and in this work were used to create a synergic interaction with hydroxyapatite and collagen to increase the strength and bioactivity of coating. Coatings were fabricated by galvanic deposition process that has different advantages an it does not require ext…
PLLA/PLA scaffolds prepared via Thermally Induced Phase Separation (TIPS): tuning of properties and biodegradability
Foams for tissue engineering applications were prepared via thermally induced phase separation (TIPS). Poly-L-Lactic Acid (PLLA) and blends of PLLA with PLA in different proportions were used (100/0, 90/10, 75/25, 50/50, 0/100 PLLA/PLA wt/wt) starting from ternary systems where dioxane was the solvent and water the non-solvent. Morphology was evaluated by Scanning Electron Microscopy (average pore size and interconnection) and the void fraction was measured by means of Hg porosimetry. Foams apparent density was also evaluated (porosity ranges from 87% to 92%). Biodegradability was estimated in a body mimicking fluid. Results show that structure and morphology (in terms of average pore size …
Tailoring PLLA scaffolds for tissue engineering applications: Morphologies for 2D and 3D cell cultures
PLLA scaffold suitable for dermis regeneration were realized by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/dioxane/water. The reconstruction of a complex tissues as the dermis implies the use of different cellular types (coculture), with different growth behaviour (2D vs. 3D). The scaffolds present an homogeneous porous surface to allow the keratinocytes 2D growth and a porous internal structure for the fibroblasts 3D growth. Our results show that the porosity of the surface can be tuned by changing the chemical nature of the sample holder (aluminium, teflon, polypropylene). A large variety of morphologies, in terms of average pore size and interconnecti…
Polymeric scaffolds based on blends of poly-l-lactic acid (PLLA) with poly-d-l- lactic acid (PLA) prepared via thermally induced phase separation (TIPS): demixing conditions and morphology
Porous scaffolds based on blends of high crystalline Poly-L-lactic acid (PLLA) with low crystalline poly-D-L-lactic acid (PLA) were prepared via Ther- mally Induced Phase Separation (TIPS), with the aim of exploring the possibility to control the degradation behaviour of the PLA-based scaffold, simultaneously pre- serving the morphological characteristics required for tissue engineering applica- tions. Porous foams with different PLLA/PLA weight ratios (from 95/5 to 60/40) were produced and characterised in terms of pore size, porosity, and thermal properties. The scaffolds present an open porosity, with average pore sizes ranging from 30 to 70 lm. Results showed that, when dealing with a P…
Evaluation of vapor mass transfer in various membrane distillation configurations: an experimental study
Vapor mass transfer phenomena in four different membrane distillation (MD) configurations were examined through a self-built laboratory scale experimen- tal apparatus: Air Gap MD, Sweeping Gas MD, Vacuum Sweeping Gas MD and Vacuum MD. Vapor fluxes were measured and compared with those predicted by various models, showing that MD performance under usual processing conditions is severely controlled by the permeate side resistance to mass transfer.
Preparation of Poly(l-lactic acid) Scaffolds by Thermally Induced Phase Separation: Role of Thermal History
Abstract Poly-L-Lactic Acid (PLLA) scaffolds for tissue engineering were prepared via thermally induced phase separation of a ternary system PLLA/dioxane/tetrahydrofurane. An extension to solution of a previously developed method for solidification from the melt was adopted, the technique being based on a Continuous Cooling Transformation (CCT) approach, consisting in recording the thermal history of rapidly cooled samples and analysing the resulting morphology. Different foams were produced by changing the thermal history, the dioxane to THF ratio (50/50, 70/30, 90/10 v/v) and the polymer concentration (2, 2.5, 4 ° wt) in the starting ternary solution. Pore size, porosity, melting and crys…
Demixing time and temperature influence on porosity and interconnection of PLLA scaffolds prepared via TIPS
Scaffolds suitable for tissue engineering applications were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/ dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the binodal region), a liquid-liquid demixing stage for a given time and a final quench from the demixing temperature to a low temperature (within the spinodal region). A large variety of morphologies, in terms of average pore size and interconnection were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleation and growth processes d…
BIOGLASS® integration in Poly-L-Lactic-Acid scaffolds produced via Thermally Induced Phase Separation (TIPS).
In this work, a method of integration of BG particles in polymeric scaffold was developed with a trial and error procedure. The main purpose was to obtain highly porous and mechanically stable bioactive devices.
Fabrication of Chitosan-Silver Nanoparticles composite coatings by galvanic deposition for orthopaedic implants
Tubular scaffold for vascular tissue engineering application
A critical obstacle in tissue engineering is the inability to maintain large masses of living cells upon transfer from the in vitro culture conditions into the host in vivo. Capillaries, and the vascular system, are required to supply essential nutrients, including oxygen, remove waste products and provide a biochemical communication “highway”. Another goal in this research field is the possibility to tune the biodegradability of the scaffold. After implantation, the scaffold has to be gradually replaced by cells and extra cellular matrix and it is crucial that this replacement takes place with an appropriate dynamics. A premature degradation, in fact, could lead to a collapse of the struct…
On the calculation of free energy of mixing for aqueous polymer solutions with group-contribution models
Abstract Liquid–liquid phase separation processes are currently used as a route to prepare polymeric porous structures for various applications (membranes and scaffolds for tissue engineering). In membrane and foam fabrication technologies, binary and mainly ternary polymer solutions are used. Membrane morphology is strongly affected by phase equilibria of processing solution. In order to achieve a better control of membrane morphology and to explore a wide quantity of solvents, a predictive tool addressing experimentals would be strongly advisable. In this paper, group contribution models were chosen to test the applicability on a PLLA–dioxane–water ternary polymer solution, whose experime…
Evaluation of mechanical and morphologic features of PLLA membranes as supports for perfusion cells culture systems
Abstract Porous biodegradable PLLA membranes, which can be used as supports for perfusion cell culture systems were designed, developed and characterized. PLLA membranes were prepared via diffusion induced phase separation (DIPS). A glass slab was coated with a binary PLLA–dioxane solution (8 wt.% PLLA) via dip coating, then pool immersed in two subsequent coagulation baths, and finally dried in a humidity-controlled environment. Surface and mechanical properties were evaluated by measuring pore size, porosity via scanning electron microscopy, storage modulus, loss modulus and loss angle by using a dynamic mechanical analysis (DMA). Cell adhesion assays on different membrane surfaces were a…
Crystallization kinetics of iPP: Influence of operating conditions and molecular parameters
An analysis of the crystallization kinetics of different grades of isotactic polypropylene (iPP) is here presented. To describe the crystallization kinetics as a function of molecular and operating parameters, the methodological path followed was the preparation of quenched samples of known cooling histories, calorimetric crystallization isotherms tests, differential scanning calorimetry cooling ramps, wide angle X-ray diffraction (WAXD) measurements, and density determination. The WAXD analysis performed on the quenched iPP samples confirmed that during the fast cooling at least a crystalline structure and a mesomorphic one form. The diffractograms were analyzed by a deconvolution procedur…
Tuning of biodegradation rate of PLLA scaffolds via blending with PLA
Blends of Poly-L-Lactic Acid (PLLA) with Poly-Lactic Acid (PLA) in different proportions (95/5, 90/10, 80/20, 70/30 and 60/40) were utilized in order to realize biodegradable and biocompatible scaffolds for soft tissue engineering applications. The scaffolds were produced via thermally induced phase separation (TIPS) starting from ternary systems where dioxane was the solvent and water the non-solvent. Morphology was evaluated by Scanning Electron Microscopy (average pore size and interconnection). Foams’ apparent density was also evaluated (porosity ranges from 87% to 92%). Moreover an in vitro biodegradation test of scaffolds was set-up in order to verify the rate of degradation of the va…
Lattice fluid model generalized for specific interactions: An application to ternary polymer solutions
Abstract The phase diagram of the Poly- l -Lactic-Acid (PLLA), dioxane and water system was derived by using the lattice fluid model generalized for specific interactions. A qualitative analysis of Hansen solubility parameters together with empirical observations were adopted to reduce the number of adjustable parameters. The as-selected model parameters were derived by fitting a set of cloud point curves; consequently, the complete phase diagram of the system was computed. The use of specific interactions between species gave out a quantitative agreement with a set of experimental data, whereas changing the polymer polydispersity the agreement is only qualitative. In principle, the present…
Poly lactic acid based scaffolds for vascular tissue engineering
A critical obstacle encountered by tissue engineering is the inability to maintain large masses of living cells upon transfer from the in vitro culture conditions to host in vivo. Capillaries, and the vascular system, are required to supply essential nutrients, including oxygen, remove waste products and provide a biochemical communication "highway". The successful use of tissue-engineered constructs is currently limited to thin or avascular tissues, such as skin or cartilage, for which post-implantation neovascularisation from the host is sufficient to meet the demand for oxygen and nutrients. To succeed in the application of tissue engineering for bigger tissues, such as bone or muscle, t…
Design, build-up and optimization of a fast quenching device for polymeric thin film
In this work an innovative apparatus for the characterization of polymer solidification under very high cooling rates (up to thousand of K/s) is described, according to the continuous cooling transformation approach adopted in metallurgy for studying structure development in metals. The proposed model experiment is addressed to design a method for the characterization of non-isothermal solidification behaviour, encompassing typical cooling conditions of polymer processing. Only temperature history determines the structure formed, as melt solidification takes place in quiescent conditions. With respect to the device previously developed by the authors [1, 3] the present equipment presents th…
No-flow temperature and solidification in injection molding simulation
The no‐flow temperature (NFT) is a parameter representing the rheological solidification temperature of a polymer. A polymer, during injection molding filling stage, can stop its flow because of its high viscosity, although it is not yet fully solidified by means of glass transition or crystallization. The NFT is used in most of injection molding simulation packages: with this simple parameter it is possible to reduce the errors deriving from viscosity extrapolation at relatively low temperatures. The viscosity measurements for polymers are usually carried out at high temperatures, and the viscosity models can fail in prediction at temperatures close to the glass transition or crystallizati…
Indentation test as a tool for monitoring the solidification process during injection molding
An inline method for monitoring the solidification process during the injection molding of semicrystalline polymers is demonstrated. The method has been applied to various poly(ethylene terephthalate) (PET) and poly(buthylene terephthalate) (PBT) samples. The technique is based on a simple device by which an additional ejector pin is pushed onto the injection-molded part with a fixed force at different times during the solidification phase while the mold remains closed. The residual deformation (the so-called indentation depth) due to the applied load is measured offline after ejection. By the performance of indentation at different times during the cooling phase, an indentation depth profi…
An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates
Abstract A new experimental route for investigating polymer crystallization under very high cooling rates (up to 2000°C/s) is described. A complete and exhaustive description of the apparatus employed for preparing thin quenched samples (100– 200 μm thick) is reported, the cooling mechanism and the temperature distribution across sample thickness is also analysed, showing that the final structure is determined only by the thermal history imposed by the fast quench apparatus. Details concerning the characterization techniques used to probe the final structure are reported, including density measurements and wide angle X-ray diffraction patterns. Experimental results concerning isotactic poly…
Analysis of the crystallization behaviour of PBT-rich PBT/PET blends under processing conditions
Among the high‐performance polyesters blends PBT/PET blends are expected to exhibit remarkable properties as far as the crystallization behaviour is concerned. The solidification behaviour of a 60/40 w/w PBT/PET blend was studied in a wide range of cooling conditions, according to a Continuous Cooling Transformation (CCT) procedure developed by the authors, aiming to emulate the typical conditions encountered in polymer processing. A set of several samples characterized by an homogeneous structure was prepared by solidification from the melt through spray cooling, and the resulting structure and properties were evaluated by density, Micro Hardness (MH), Wide Angle X‐ray Diffraction (WAXD) m…
BIOGLASS® pre-treatment improves its integration in polymeric scaffolds
Composite Coatings of Chitosan and Silver Nanoparticles Obtained by Galvanic Deposition for Orthopedic Implants
In this work, composite coatings of chitosan and silver nanoparticles were presented as an antibacterial coating for orthopedic implants. Coatings were deposited on AISI 304L using the galvanic deposition method. In galvanic deposition, the difference of the electrochemical redox potential between two metals (the substrate and a sacrificial anode) has the pivotal role in the process. In the coupling of these two metals a spontaneous redox reaction occurs and thus no external power supply is necessary. Using this process, a uniform deposition on the exposed area and a good adherence of the composite coating on the metallic substrate were achieved. Physical-chemical characterizations were car…
Fast and green: Sustainable rapid-prototyping of microfluidic chips on polylactic acid substrates
This paper reports novel ways to bond bio-based polylactic acid (PLA) substrates for the production of sustainable, single-use, microfluidic components. A laser-based, fast (minutes) fabrication process for multi-layer microfluidic devices in PLA was reported recently but in that report, demonstrator devices were bonded with adhesive tape, which significantly reduced the devices transparency. In this paper, we propose two novel ways to bond PLA substrates, which alleviate the need for adhesives, and enable optimal device transparency.