0000000000011710

AUTHOR

M. R. J. Palosaari

Minimum detection limits and applications of proton and helium induced X-ray emission using transition-edge sensor array

Abstract We have determined minimum detection limits, MDLs, for elements 14 ⩽ Z ⩽ 86 using a transition-edge sensor array, TES array, and as a comparison using an Amptek X-123SDD silicon drift detector, SDD. This was done using a 3 MeV proton beam and a 5.1 MeV helium beam. MDLs were determined for a thin film sample on top of C substrate, and for a bulk sample containing mostly Al. Due to the higher peak-to-background ratio, lower detection limits were obtainable using the TES array for most of the elements. However, for elements 30 ⩽ Z ⩽ 45 the performance of the TES array was not as good as the SDD performance. This is due to the limitations of the TES used at energies >10 keV. The great…

research product

Broadband Ultrahigh-Resolution Spectroscopy of Particle-Induced X Rays: Extending the Limits of Nondestructive Analysis

Nondestructive analysis (NDA) based on x-ray emission is widely used, for example, in the semiconductor and concrete industries. Here, we demonstrate significant quantitative and qualitative improvements in broadband x-ray NDA by combining particle-induced emission with detection based on superconducting microcalorimeter arrays. We show that the technique offers great promise in the elemental analysis of thin-film and bulk samples, especially in the difficult cases where tens of different elements with nearly overlapping emission lines have to be identified down to trace concentrations. We demonstrate the efficiency and resolving capabilities by spectroscopy of several complex multielement …

research product

Transition-Edge Sensors for Particle Induced X-ray Emission Measurements

In this paper we present a new measurement setup, where a transitionedge sensor detector array is used to detect X-rays in particle induced X-ray emission measurements with a 2 MeV proton beam. Transition-edge sensors offer orders of magnitude improvement in energy resolution compared to conventional silicon or germanium detectors, making it possible to recognize spectral lines in materials analysis that have previously been impossible to resolve, and to get chemical information from the elements. Our sensors are cooled to the operation temperature (65 mK) with a cryogen-free adiabatic demagnetization refrigerator, which houses a specially designed X-ray snout that has a vacuum tight window…

research product

Large 256-Pixel X-ray Transition-Edge Sensor Arrays With Mo/TiW/Cu Trilayers

We describe the fabrication and electrical characterization of 256-pixel X-ray transition-edge sensor (TES) arrays intended for materials analysis applications. The processing is done on 6-in wafers, providing capabilities on a commercial scale. TES films were novel proximity coupled Mo/TiW/Cu trilayers, where the thin TiW layer in between aims to improve the stability of the devices by preventing unwanted effects such as Mo/Cu interdiffusion. The absorber elements were electrodeposited gold of thickness 2 μm. The single-pixel design discussed here is the so-called Corbino geometry. Most design goals were successfully met, such as the critical temperature, thermal time constant, and transit…

research product

Heavy ion induced Ti X-ray satellite structure for Ti, TiN, and TiO2 thin films

research product

Beating Darwin-Bragg losses in lab-based ultrafast x-ray experiments

The use of low temperature thermal detectors for avoiding Darwin-Bragg losses in lab-based ultrafast experiments has begun. An outline of the background of this new development is offered, showing the relevant history and initiative taken by this work. (C) 2017 Author(s). Funding Agencies|Knut and Alice Wallenberg Foundation; ERC [226136]; Finnish Funding Agency for Technology and Innovation TEKES; Academy of Finland [260880]; NIST Innovations in Measurement Science program; DOE Office of Basic Energy Sciences

research product