0000000000013705

AUTHOR

Martin Ellguth

showing 13 related works from this author

Spinovo rozlisena time-of-flight k-reozlisena fotoemissia Ir-- Kompletny fotoemissny experiment.

2017

Ultramicroscopy 183, 19 - 29 (2017). doi:10.1016/j.ultramic.2017.06.025

Physics570Spin polarizationInverse photoemission spectroscopyAnalytical chemistryARPES spinovo rozlisena fotoemissia jednokrokovy modelFermi surfaceAngle-resolved photoemission spectroscopyFermi energy02 engineering and technologyElectron021001 nanoscience & nanotechnologyARPES spin resolved PES one-step model01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsTime of flightEffective mass (solid-state physics)ddc:5700103 physical sciencesCondensed Matter::Strongly Correlated ElectronsAtomic physics010306 general physics0210 nano-technologyInstrumentation
researchProduct

Momentum-resolved photoelectron absorption in surface barrier scattering on Ir(111) and graphene/Ir(111)

2017

Physical review / B 96(15), 155108 (2017). doi:10.1103/PhysRevB.96.155108

Range (particle radiation)Materials scienceGrapheneScattering02 engineering and technologyPhotoelectric effect021001 nanoscience & nanotechnology01 natural sciencesMolecular physics530law.inventionMomentumElectron diffractionlaw0103 physical sciencesRectangular potential barrierddc:530010306 general physics0210 nano-technologyAbsorption (electromagnetic radiation)
researchProduct

Spin texture of time-reversal symmetry invariant surface states on W(110)

2016

AbstractWe find in the case of W(110) previously overlooked anomalous surface states having their spin locked at right angle to their momentum using spin-resolved momentum microscopy. In addition to the well known Dirac-like surface state with Rashba spin texture near the "Equation missing"-point, we observe a tilted Dirac cone with circularly shaped cross section and a Dirac crossing at 0.28 × "Equation missing" "Equation missing" within the projected bulk band gap of tungsten. This state has eye-catching similarities to the spin-locked surface state of a topological insulator. The experiments are fortified by a one-step photoemission calculation in its density-matrix formulation.

PhysicsMultidisciplinaryCondensed matter physicsTexture (cosmology)Dirac (software)Right angleLarge scale facilities for research with photons neutrons and ions02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesArticleMomentumT-symmetryTopological insulator0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologySpin-½Surface statesScientific Reports
researchProduct

Relation between spin–orbit induced spin polarization, Fano-effect and circular dichroism in soft x-ray photoemission

2019

A Feynman diagram analysis of photoemission probabilities suggests a relation between two final-state spin polarization effects, the optical spin-orientation originating from the interaction with circularly polarized light ([Formula: see text], Fano effect) and the spin polarization induced by the spin-orbit scattering ([Formula: see text], Mott effect). The analysis predicts that [Formula: see text] is proportional to the product of [Formula: see text] and the circular dichroism in the angular distribution (CDAD) of photoelectrons. To confirm this prediction, the spin polarization of photoelectrons excited by soft x-ray radiation from initial spin-degenerate bulk states of tungsten using t…

PhysicsPhotonCondensed matter physicsSpin polarizationScattering02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesHelicitysymbols.namesakeExcited state0103 physical sciencessymbolsFeynman diagramCondensed Matter::Strongly Correlated ElectronsGeneral Materials Science010306 general physics0210 nano-technologySpin (physics)Circular polarizationJournal of Physics: Condensed Matter
researchProduct

Multi-MHz time-of-flight electronic bandstructure imaging of graphene on Ir(111)

2016

In the quest for detailed spectroscopic insight into the electronic structure at solid surfaces in a large momentum range, we have developed an advanced experimental approach. It combines the 3D detection scheme of a time-of-flight momentum microscope with an optimized filling pattern of the BESSY II storage ring. Here, comprehensive data sets covering the full surface Brillouin zone have been used to study faint substrate-film hybridization effects in the electronic structure of graphene on Ir(111), revealed by a pronounced linear dichroism in angular distribution. The method paves the way to 3D electronic bandmapping with unprecedented data recording efficiency.

Materials scienceMicroscopePhysics and Astronomy (miscellaneous)business.industryGraphene02 engineering and technologyElectronic structureDichroism021001 nanoscience & nanotechnology01 natural scienceslaw.inventionBrillouin zoneTime of flightOpticslaw0103 physical sciencesddc:530010306 general physics0210 nano-technologybusinessStorage ringSurface statesApplied Physics Letters
researchProduct

Mapováni spinů povrchových a bulkových Rashba stavů v tenkých vrstvách feroelektrického α-GeTe(111)

2015

Rozbíjení inverzní symetrie ve fereeleRashba efekt; Fotoemisse; DFTktrickém polovodiči způsobuje děleni stavů, tzv Rashba efekt. V tomto článku ukazujeme kompletně mapování spinové polarizace těchto Rashba stavů za pomoci spinovo rozlišené fotoemisse. The breaking of bulk inversion symmetry in ferroelectric semiconductors causes a Rashba-type spin splitting of electronic bulk bands. This is shown by a comprehensive mapping of the spin polarization of the electronic bands in ferroelectric α- GeTe(111) films using a time-of-flight momentum microscope equipped with an imaging spin filter that enables a simultaneous measurement of more than 10 000 data points. The experiment reveals an opposite…

Point reflectionFOS: Physical sciences02 engineering and technologyDFT01 natural sciencesCondensed Matter::Materials ScienceElectric field0103 physical sciencesRashba efectTexture (crystalline)010306 general physicsControlling collective statesSpin-½PhysicsCondensed Matter - Materials ScienceSpin polarizationCondensed matter physicsSpintronicsMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyHelicityFerroelectricityRashba efekt0210 nano-technologyphotoemissionfotoemise
researchProduct

Hosting of surface states in spin–orbit induced projected bulk band gaps of W(1 1 0) and Ir(1 1 1)

2017

Journal of physics / Condensed matter 29(25), 255001 - (2017). doi:10.1088/1361-648X/aa7173

PhysicsPhotonCondensed matter physicsSpintronicsField (physics)Band gap02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences530Brillouin zone0103 physical sciencesGeneral Materials Scienceddc:530010306 general physics0210 nano-technologySpin (physics)ExcitationSurface states
researchProduct

Quantitative spin polarization analysis in photoelectron emission microscopy with an imaging spin filter.

2012

Abstract Using a photoelectron emission microscope (PEEM), we demonstrate spin-resolved electron spectroscopic imaging of ultrathin magnetic Co films grown on Cu(100). The spin-filter, based on the spin-dependent reflection of low energy electrons from a W(100) crystal, is attached to an aberration corrected electrostatic energy analyzer coupled to an electrostatic PEEM column. We present a method for the quantitative measurement of the electron spin polarization at 4×10 3 points of the PEEM image, simultaneously. This approach uses the subsequent acquisition of two images with different scattering energies of the electrons at the W(100) target to directly derive the spin polarization witho…

Spectrum analyzerMicroscopeSpin polarizationChemistryScatteringElectric potential energyElectronPolarization (waves)Atomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionlawAtomic physicsElectron microscopeInstrumentationUltramicroscopy
researchProduct

4D texture of circular dichroism in soft-x-ray photoemission from tungsten

2019

Brief treatment and crisis intervention 21(1), 013017 (2019). doi:10.1088/1367-2630/aaf4cd

PhysicsCircular dichroismPhotonW(110)Binding energy370General Physics and AstronomyPolarimeter01 natural sciencesMolecular physicsToF momentum microscopySymmetry (physics)010305 fluids & plasmascircular dichroismBrillouin zoneMomentumphotoemission; soft x-rays; circular dichroism; W(110); ToF momentum microscopy0103 physical sciencessoft x-raysddc:530010306 general physicsphotoemissionSurface states
researchProduct

Instability of the topological surface state in Bi2Se3 upon deposition of gold

2017

Momentum-resolved photoemission spectroscopy indicates the instability of the Dirac surface state upon deposition of gold on the (0001) surface of the topological insulator Bi2Se3. Based on the str ...

Surface (mathematics)Materials scienceCondensed matter physicsPhotoemission spectroscopyDirac (software)02 engineering and technologyState (functional analysis)021001 nanoscience & nanotechnology01 natural sciencesInstabilityTopological insulator0103 physical sciencesDeposition (phase transition)Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Multidimensional photoemission spectroscopy—the space-charge limit

2018

New journal of physics 20(3), 033004 - (2018). doi:10.1088/1367-2630/aaa262

Free electron modelPhysicsPhotonPhotoemission spectroscopyFermi levelGeneral Physics and AstronomyFermi surfaceFermi energy02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesElectron spectroscopy530symbols.namesake0103 physical sciencessymbolsddc:530Atomic physics010306 general physics0210 nano-technology
researchProduct

Direct 3D mapping of the Fermi surface and Fermi velocity.

2017

Time-of-flight momentum microscopy is developed. It enables direct three-dimensional mapping of the topology of the Fermi surface, identification of electron and hole pockets, and quantification of Fermi velocity as a function of wavevector.

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsAstrophysics::High Energy Astrophysical PhenomenaMechanical EngineeringFermi surfaceFermi energy02 engineering and technologyGeneral ChemistryElectron021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMomentum3d mappingMechanics of Materials0103 physical sciencesMicroscopyCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceWave vector010306 general physics0210 nano-technologyTopology (chemistry)Nature materials
researchProduct

Time-of-flight photoelectron momentum microscopy with 80–500 MHz photon sources: electron-optical pulse picker or bandpass pre-filter

2021

Journal of synchrotron radiation 28(6), 1891 - 1908 (2021). doi:10.1107/S1600577521010511

Nuclear and High Energy PhysicsSpectrum analyzerMaterials sciencePhotonMicroscopephotoelectron diffraction550Synchrotron radiationmomentum microscopylaw.inventionOpticslawddc:550Pulse waveTime domaintime of flight spectroscopy ; momentum microscopy ; ARPES ; photoelectron diffraction ; pulse pickingpulse pickingInstrumentationMomentum (technical analysis)Radiationbusiness.industryARPESResearch PapersTime of flighttime-of-flight spectroscopyPhysics::Accelerator Physicsbusiness
researchProduct