0000000000014868
AUTHOR
Hans Joachim Räder
Role of Surface Chemistry in the Superhydrophobicity of the Springtail Orchesella cincta (Insecta:Collembola)
Collembola are ancient arthropods living in soil with extensive exposure to dirt, bacteria, and fungi. To protect from the harsh environmental conditions and to retain a layer of air for breathing when submerged in water, they have evolved a superhydrophobic, liquid-repelling cuticle surface. The nonfouling and self-cleaning properties of springtail cuticle make it an interesting target of biomimetic materials design. Recent research has mainly focused on the intricate microstructures at the cuticle surface. Here we study the role of the cuticle chemistry for the Collembola species Orchesella cincta (Collembola, Entomobryidae). O. cincta uses a relatively simple cuticle structure with prima…
Changing the size of a cavity via an electron-transfer: synthesis and reduction of 1,5,22,26-tetraoxa-[5,5]-(2,8)-dibenzo[a,e]cylooctatetraenophane
Abstract The synthesis and electron transfer reactions of the title compound, the first macrocycle incorporating two cyclooctatetraene units, are described.
Revisiting Secondary Structures in NCA Polymerization: Influences on the Analysis of Protected Polylysines
Two series (degree of polymerization: 20–200) of polylysines with Z and TFA protecting groups were synthesized, and their behavior in a range of analytical methods was investigated. Gel permeation chromatography of the smaller polypeptides reveals a bimodal distribution, which is lost in larger polymers. With the help of GPC, NMR, circular dichroism (CD), and MALDI-TOF, it was demonstrated that the bimodal distribution is not due to terminated chains or other side reactions. Our results indicate that the bimodality is caused by a change in secondary structure of the growing peptide chain that occurs around a degree of polymerization of about 15. This change in secondary structure interferes…
MALDI-TOF characterization of macromonomers
Methacryloyl endfunctionalized oligostyrene macromonomers were characterized by matrix assisted laser desorption ionization/time of flight (MALDI-TOF) spectroscopy and by isocratic and gradient high performance liquid chromatography (HPLC). The molar mass distribution derived by the different techniques coincide for the investigated oligomers. Mixing experiments revealed that the MALDI-TOF peak areas do not necessarily represent the mixing ratio of the components. Combination of gradient HPLC and MALDI-TOF has resolved the chemical composition of the coupling products formed by reaction of the living anion with oxygen.
Quantitative analysis of broad molecular weight distributions obtained by matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry
In order to quantify the error of matrix-assisted laser desorption ionisation (MALDI) time-of-flight (TOF) mass spectrometry in the determination of broad molecular weight distributions, different mixtures by weight of two poly(methyl methacrylate) standards were prepared. These mixtures, with well-defined bimodal molecular weight distributions were analysed by MALDI-TOF mass spectrometry using different matrices (2,4,6-trihydroxyacetophenone and 2,5-dihydroxybenzoic acid) and different cations (Li+, Na+, K+, Rb+ and Cs+) for doping the analyte. From the MALDI-TOF mass spectrometric data, the weight fractions of the two polymers of all mixtures were determined and compared to the values mea…
Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N = 9 Armchair Graphene Nanoribbons.
Recent advances in bottom-up synthesis of atomically defined graphene nanoribbons (GNRs) with various microstructures and properties have demonstrated their promise in electronic and optoelectronic devices. Here we synthesized N = 9 armchair graphene nanoribbons (9-AGNRs) with a low optical band gap of ∼1.0 eV and extended absorption into the infrared range by an efficient chemical vapor deposition process. Time-resolved terahertz spectroscopy was employed to characterize the photoconductivity in 9-AGNRs and revealed their high intrinsic charge-carrier mobility of approximately 350 cm2·V-1·s-1.
Poly(S-ethylsulfonyl-l-homocysteine): An α-Helical Polypeptide for Chemoselective Disulfide Formation
Homocysteine and cysteine are the only natural occurring amino acids that are capable of disulfide bond formations in peptides and proteins. The chemoselective formation of asymmetric disulfide bonds, however, is chemically challenging and requires an activating group combining stability against hard nucleophiles, e.g., amines, with reactivity toward thiols and soft nucleophiles. In light of these considerations, we introduced the S-alkylsulfonyl cysteines in our previous work. Here, we present the synthesis and ring-opening polymerization of S-ethylsulfonyl-l-homocysteine N-carboxyanhydrides. We demonstrate that the polymerization leads to narrowly distributed polypeptides (Đ = 1.1–1.3) wi…
Fluorovinylsulfones and -Sulfonates as Potent Covalent Reversible Inhibitors of the Trypanosomal Cysteine Protease Rhodesain: Structure–Activity Relationship, Inhibition Mechanism, Metabolism, and In Vivo Studies
Rhodesain is a major cysteine protease of Trypanosoma brucei rhodesiense, a pathogen causing Human African Trypanosomiasis, and a validated drug target. Recently, we reported the development of α-halovinylsulfones as a new class of covalent reversible cysteine protease inhibitors. Here, α-fluorovinylsulfones/-sulfonates were optimized for rhodesain based on molecular modeling approaches. 2d, the most potent and selective inhibitor in the series, shows a single-digit nanomolar affinity and high selectivity toward mammalian cathepsins B and L. Enzymatic dilution assays and MS experiments indicate that 2d is a slow-tight binder (Ki = 3 nM). Furthermore, the nonfluorinated 2d-(H) shows favorabl…
Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration
Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be "bottom-up" synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient "bottom-up" chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different …
Targeted Repolarization of Tumor‐Associated Macrophages via Imidazoquinoline‐Linked Nanobodies
Abstract Tumor‐associated macrophages (TAMs) promote the immune suppressive microenvironment inside tumors and are, therefore, considered as a promising target for the next generation of cancer immunotherapies. To repolarize their phenotype into a tumoricidal state, the Toll‐like receptor 7/8 agonist imidazoquinoline IMDQ is site‐specifically and quantitatively coupled to single chain antibody fragments, so‐called nanobodies, targeting the macrophage mannose receptor (MMR) on TAMs. Intravenous injection of these conjugates result in a tumor‐ and cell‐specific delivery of IMDQ into MMRhigh TAMs, causing a significant decline in tumor growth. This is accompanied by a repolarization of TAMs to…
Synthesis and noncovalent protein conjugation of linear-hyperbranched PEG-poly(glycerol) alpha,omega(n)-telechelics.
Linear-hyperbranched, heterobifunctional alpha,omega(n) telechelic block copolymers consisting of a linear poly(ethylene glycol) (PEG) chain and a hyperbranched polyglycerol (PG) block have been prepared in five steps, using a protected amino-functional initiator. The polyfunctionality omega(n) (OH groups) can be adjusted by the degree of polymerization (DP(n)) of the polyglycerol block. Subsequent introduction of a single biotin unit by amidation in alpha-position permitted noncovalent bioconjugation with avidin.
CCDC 1521825: Experimental Crystal Structure Determination
Related Article: Zongping Chen, Wen Zhang, Carlos-Andres Palma, Alberto Lodi Rizzini, Bilu Liu, Ahmad Abbas, Nils Richter, Leonardo Martini, Xiao-Ye Wang, Nicola Cavani, Hao Lu, Neeraj Mishra, Camilla Coletti, Reinhard Berger, Florian Klappenberger, Mathias Kläui, Andrea Candini, Marco Affronte, Chongwu Zhou, Valentina De Renzi, Umberto del Pennino, Johannes V. Barth, Hans Joachim Räder, Akimitsu Narita, Xinliang Feng, and Klaus Müllen|2016|J.Am.Chem.Soc.|138|15488|doi:10.1021/jacs.6b10374